Skip to main content
Log in

Cosmophysical Research with GAMMA-400

  • ELEMENTARY PARTICLES AND FIELDS
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The GAMMA-400 gamma-ray telescope is the successor of Soviet and Russian gamma-ray telescopes. GAMMA-400 is being developed for cosmophysical research in accordance with the Russian Federal Space Program 2016–2025. The GAMMA-400 experiment will be implemented aboard the Russian astrophysical space observatory in a highly elliptic orbit during 7 years to provide new data on gamma-ray emission mainly from the Galactic plane, Galactic Center, the Sun and cosmic-ray electron \(+\) positron fluxes. The main mode of observations will be the continuous point-source mode with the duration of up to \({\sim}\)100 days. The GAMMA-400 gamma-ray telescope will study high-energy gamma-ray emission up to several TeV and cosmic-ray electrons \(+\) positrons up to 20 TeV. GAMMA-400 will have the never-achieved angular resolution, the high-energy and time resolutions, as well as very good separation efficiency of gamma rays from cosmic-ray background and of electrons \(+\) positrons from protons. The distinctive features of GAMMA-400 are the excellent angular resolution of \({\sim}0.01^{\circ}\) at \(E_{\gamma}=100\) GeV that exceeds resolutions of the space-based and ground-based gamma-ray telescopes by a factor of 5–10, as well as high-energy resolution of \({\sim}2{\%}\) at \(E_{\gamma}=100\) GeV. GAMMA-400 studies can discover gamma-ray emission from annihilation or decay of dark matter particles, identify many unassociated discrete sources, explore the structure of extended sources, search for gamma-ray bursts and solar gamma-ray flares, improve the data on cosmic-ray electron \(+\) positron spectra for energies of >50 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. V. L. Ginzburg and S. I. Syrovatskii, Sov. Phys. Usp. 7, 696 (1965).

    ADS  Google Scholar 

  2. V L. Ginzburg and S. I. Syrovatskii, Sov. Phys. Usp. 9, 223 (1966).

    ADS  Google Scholar 

  3. A. M. Gal’per, V. G. Kirillov-Ugryumov, B. I. Luchkov, and O. F. Prilutskii, Sov. Phys. Usp 14, 630 (1972).

    ADS  Google Scholar 

  4. A. M. Gal’per, V. G. Kirillov-Ugryumov, and B. I. Luchkov, Sov. Phys. Usp. 17, 186 (1974).

    ADS  Google Scholar 

  5. A. M. Gal’per, V. G. Kirillov-Ugryumov, and B. I. Luchkov, Sov. Phys. Usp. 20, 350 (1977).

    ADS  Google Scholar 

  6. A. M. Gal’per, B. I. Luchkov, and O. F. Prilutskii, Sov. Phys. Usp. 22, 456 (1979).

    ADS  Google Scholar 

  7. A. M. Gal’per, Yu. D. Kotov, and B. I. Luchkov, Sov. Phys. Usp. 23, 873 (1980).

    ADS  Google Scholar 

  8. S. A. Volobuev, A. M. Galper, V. G. Kirillov-Ugryumov, B. I. Luchkov, Yu. V. Ozerov, I. L. Rozental, E. M. Shermanzon, N. L. Grigorov, L. F. Kalinkin, A. S. Melioranskii, I. A. Savenko, and T. A. Shashko, Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 2259 (1970).

    Google Scholar 

  9. S. A. Volobuev, A. M. Galper, V. G. Kirillov-Ugryumov, B. I. Luchkov, and Yu. V. Ozerov, Sov. Phys. JETP Lett. 13, 28 (1971).

    ADS  Google Scholar 

  10. V. V. Akimov, V. M. Balebanov, A. S. Belaousov, I. D. Blochintsev, G. V. Veselova, M. B. Dobriyan, L. F. Kalinkin, S. V. Kovalenko, V. D. Kozlov, N. G. Leikov, N. K. Mordvov, Y. I. Nagornih, V. E. Nesterov, O. F. Prilutskiy, V. L. Prohin, V. G. Rodin, et al., Space Sci. Rev. 49, 111 (1988).

    ADS  Google Scholar 

  11. V. V. Akimov, V. M. Balebanov, A. S. Belaousov, I. D. Blohintsev, V. A. Volzhenskaya, I. A. Gerasimov, M. B. Dobriyan, L. F. Kalinkin, V. D. Kozlov, V. B. Kotova, N. G. Leikov, N. K. Mordvov, Yu. I. Nagornih, V. E. Nesterov, V. P. Poluektov, O. F. Prilutskiy, et al., Space Sci. Rev. 49, 125 (1988).

    ADS  Google Scholar 

  12. C. E. Fichtel, R. C. Hartman, D. A. Kniffen, D. J. Thompson, G. F. Bignami, H. Ögelman, M. E. Özel, and T. Tümer, Astrophys. J. 198, 163 (1975).

    ADS  Google Scholar 

  13. B. N. Swanenburg, K. Bennett, G. F. Bignami, R. Buccheri, P. Caraveo, W. Hermsen, G. Kanbach, G. G. Lichti, J. L. Masnou, H. A. Mayer-Hasselwander, J. A. Paul, B. Sacco, L. Scarsi, and R. D. Wills, Astrophys. J. 243, L69 (1981).

    ADS  Google Scholar 

  14. A. R. Bazer-Bachi, J. M. Lavigne, J. F. Olive, M. Gros, I. Grenier, N. G. Leikov, V. V. Akimov, V. A. Volsenskaya, L. F. Kalinkin, V. E. Nesterov, A. M. Galper, V. M. Zemskov, Y. V. Oserov, N. P. Topchiev, M. I. Fradkin, E. I. Chuikin, et al., Nucl. Phys. B Suppl. 33, 208 (1993).

    Google Scholar 

  15. E. J. Schneid, D. L. Bertsch, B. L. Dingus, J. A. Esposito, S. E. Fichte, R. C. Hartman, S. D. Hunter, G. Kanbach, D. A. Kniffen, Y. S. Lin, N. A. Mayer-Hasselwander, P. F. Michelson, S. von Montigny, R. Mukherjee, P. L. Nolan, R. Sreekumar, and D. J. Thompson, Astron. Astrophys. Suppl. Ser. 120, 299 (1996).

    Google Scholar 

  16. Yu. D. Kotov, V. N. Yurov, E. E. Lupar, K. F. Vlasik, A. I. Arkhangelsky, A. S. Glyanenko, I. V. Rubtsov, V. V. Kadilin, and V. G. Tyshkevich, Solar Syst. Res. 45, 97 (2011).

    ADS  Google Scholar 

  17. S. Abdollahi, F. Acero, L. Baldini, J. Ballet, D. Bastieri, R. Bellazzini, B. Berenji, A. Berretta, E. Bissaldi, R. D. Blandford, E. Bloom, R. Bonino, A. Brill, R. J. Britto, P. Bruel, T. H. Burnett, et al., Astrophys. J. Suppl. Ser. 260, 53 (2022).

    ADS  Google Scholar 

  18. S. Abdollahi, F. Acero, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, J. Becerra Gonzalez, R. Bellazzini, A. Berretta, E. Bissaldi, R. D. Blandford, E. D. Bloom, et al., Astrophys. J. Suppl. Ser. 247, 33 (2020).

    ADS  Google Scholar 

  19. M. Ajello, M. Arimoto, M. Axelsson, L. Baldini, G. Barbiellini, D. Bastieri, R. Bellazzini, P. N. Bhat, E. Bissaldi, R. D. Blandford, R. Bonino, J. Bonnell, E. Bottacini, J. Bregeon, P. Bruel, R. Buehler, et al., Astrophys. J. 878, 52 (2019).

    ADS  Google Scholar 

  20. A. von Kienlin, C. A. Meegan, W. S. Paciesas, P. N. Bhat, E. Bissaldi, M. S. Briggs, E. Burns, W. H. Cleveland, M. H. Gibby, M. M. Giles, A. Goldstein, R. Hamburg, C. M. Hui, D. Kocevski, B. Mailyan, C. Malacaria, et al., Astrophys. J. 893, 46 (2020).

    ADS  Google Scholar 

  21. A. Lien, T. Sakamoto, S. D. Barthelmy, W. H. Baumgartner, J. K. Cannizzo, K. Chen, N. R. Collins, J. R. Cummings, N. Gehrels, H. A. Krimm, C. B. Markwardt, D. M. Palmer, M. Stamatikos, E. Troja, and T. N. Ukwatta, Astrophys. J. 829, 7 (2016).

    ADS  Google Scholar 

  22. D. J. Thompson, Rep. Prog. Phys. 71, 116901 (2008).

    ADS  Google Scholar 

  23. R. K. Leane, T. R. Slatyer, J. F. Beacom, and K. C. Y. Ng, Phys. Rev. D 98, 023016 (2018).

    ADS  Google Scholar 

  24. F. Calore, P. Carenza, M. Giannotti, J. Jaeckel, and A. Mirizz, Phys. Rev. D 102, 123005 (2020).

    ADS  Google Scholar 

  25. J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, O. Ganel, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kuznetsov, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, et al., Nature (London, U.K.) 456, 362 (2008).

    ADS  Google Scholar 

  26. S. Abdollahi et al. (Fermi-LAT Collab.), Phys. Rev. D 95, 082007 (2017).

    ADS  Google Scholar 

  27. PAMELA Collab., Riv. Nuovo Cim. 40, 473 (2017).

    Google Scholar 

  28. M. Aguilar et al. (AMS Collab.), Phys. Rev. Lett. 113, 221102 (2014).

    ADS  Google Scholar 

  29. O. Adriani et al. (CALET Collab.), Phys. Rev. Lett. 120, 261102 (2018).

    ADS  Google Scholar 

  30. DAMPE Collab., Nature (London, U.K.) 552, 63 (2017).

    Google Scholar 

  31. D. B. Tridoni, P. Colin, L. Cossio, M. Doro, and V. Scalzotto, arXiv: 1110.4008.

  32. D. Staszak, arXiv: 1508.06597.

  33. F. Aharonian, A. G. Akhperjanian, G. Anton, U. Barres de Almeida, A. R. Bazer-Bachi, Y. Becherini, B. Behera, K. Bernlöhr, A. Bochow, C. Boisson, J. Bolmont, V. Borrel, J. Brucker, F. Brun, P. Brun, R. Bühler, et al., Astron. Astrophys. 508, 561 (2009).

    ADS  Google Scholar 

  34. V. A. Dogiel, M. I. Fradkin, L. V. Kurnosova, L. A. Razorenov, M. A. Rusakovich, and N. P. Topchiev, Space Sci. Rev. 49, 215 (1989).

    ADS  Google Scholar 

  35. V. L. Ginzburg, V. A. Kaplin, A. I. Karakash, L. V. Kurnosova, A. G. Labenskii, M. F. Runtso, A. P. Soldatov, N. P. Topchiev, M. I. Fradkin, S. K. Chernichenko, and I. V. Shein, Cosmic Res. 45, 449 (2007).

    ADS  Google Scholar 

  36. A. M. Galper, O. Adriani, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, M. Boezio, V. Bonvicini, K. A. Boyarchuk, Yu. V. Gusakov, M. O. Farber, M. I. Fradkin, V. A. Kachanov, V. A. Kaplin, M. D. Kheymits, A. A. Leonov, F. Longo, et al., Adv. Space Res. 51, 297 (2013).

    ADS  Google Scholar 

  37. A. A. Leonov, A. M. Galper, V. Bonvicini, N. P. Topchiev, O. Adriaini, R. L. Aptekar, I. V. Arkhangelskaja, A. I. Arkhangelskiy, L. Bergstrom, E. Berti, G. Bigongiari, S. G. Bobkov, M. Boezio, E. A. Bogomolov, S. Bonechi, M. Bongi, et al., Adv. Space Res. 56, 1538 (2015).

    ADS  Google Scholar 

  38. N. P. Topchiev, A. M. Galper, V. Bonvicini, O. Adriani, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, S. G. Bobkov, M. Boezio, O. D. Dalkarov, A. E. Egorov, M. S. Gorbunov, Yu. V. Gusakov, B. I. Hnatyk, V. V. Kadilin, V. A. Kaplin, et al., J. Phys.: Conf. Ser. 798, 012011 (2017).

    Google Scholar 

  39. A. M. Galper, N. P. Topchiev, and Yu. T. Yurkin, Astron. Rep. 62, 882 (2018).

    ADS  Google Scholar 

  40. A. A. Leonov, A. M. Galper, N. P. Topchiev, A. V. Bakaldin, M. D. Kheimits, A. V. Mikhailova, V. V. Mikhailov, and S. I. Suchkov, Phys. At. Nucl. 82, 855 (2019).

    Google Scholar 

  41. N. P. Topchiev, A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, Yu. V. Gusakov, O. D. Dalkarov, A. E. Egorov, V. G. Zverev, A. A. Leonov, P. Yu. Naumov, N. Yu. Pappe, M. F. Runtso, Yu. I. Stozhkov, S. I. Suchkov, M. D. Kheimitz, et al., Bull. Russ. Acad. Sci.: Phys. 83, 629 (2019).

    Google Scholar 

  42. A. I. Arkhangelskiy, A. M. Galper, I. V. Arkhangelskaja, A. V. Bakaldin, E. N. Chasovikov, I. V. Chernysheva, O. D. Dalkarov, A. E. Egorov, Yu. V. Gusakov, M. D. Kheymits, A. A. Leonov, N. Yu. Pappe, M. F. Runtso, Yu. I. Stozhkov, S. I. Suchkov, N. P. Topchiev, et al., J. Phys.: Conf. Ser. 1690, 012024 (2020).

    Google Scholar 

  43. A. I. Arkhangelskiy, A. M. Galper, I. V. Arkhangelskaja, A. V. Bakaldin, I. V. Chernysheva, O. D. Dalkarov, A. E. Egorov, Yu. V.Gusakov, M. D. Kheymits, A. A. Leonov, N. Yu. Pappe, M. F. Runtso, Yu. I. Stozhkov, S. I. Suchkov, N. P. Topchiev, and Yu. T. Yurkin, Phys. At. Nucl. 83, 252 (2020).

    Google Scholar 

  44. A. E. Egorov, N. P. Topchiev, A. M. Galper, O. D. Dalkarov, A. A. Leonov, S. I. Suchkov, and Yu. T. Yurkin, J. Cosmol. Astropart. Phys. 2020, 049 (2020).

  45. S. I. Suchkov, A. I. Arkhangelskiy, V. A. Baskov, A. M. Galper, O. D. Dalkarov, A. I. L’vov, N. Yu. Pappe, V. V. Polyansky, N. P. Topchiev, and I. V. Chernysheva, Instrum. Exp. Tech. 64, 669 (2021).

    Google Scholar 

  46. A. A. Leonov, A. M. Galper, N. P. Topchiev, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, I. V. Chernysheva, O. D. Dalkarov, A. E. Egorov, M. D. Kheymits, M. G. Korotkov, A. G. Malinin, A. G. Mayorov, V. V. Mikhailov, A. V. Mikhailova, P. Yu. Minaev, et al., Adv. Space Res. 69, 514 (2022).

    ADS  Google Scholar 

  47. N. P. Topchiev, A. M. Galper, I. V. Arkhangelskaja, A. I. Arkhangelskiy, A. V. Bakaldin, R. A. Cherniy, I. V. Chernysheva, E. N. Gudkova, Yu. V. Gusakov, O. D. Dalkarov, A. E. Egorov, M. D. Kheymits, M. G. Korotkov, A. A. Leonov, A. G. Malinin, V. V. Mikhailov, et al., Adv. Space Res. 70, 2773 (2022).

    ADS  Google Scholar 

  48. W. B. Atwood, A. A. Abdo, M. Ackermann, W. Althouse, B. Anderson, M. Axelsson, L. Baldini, J. Ballet, D. L. Band, G. Barbiellini, J. Bartelt, D. Bastieri, B. M. Baughman, K. Bechtol, D. Bédérède, F. Bellardi, et al., Astrophys. J. 697, 1071 (2009).

    ADS  Google Scholar 

  49. N. Budnev, I. Astapov, P. Bezyazeekov, E. Bonvech, A. Borodin, A. Bulan, A. Chiavassa, D. Chernov, A. Dyachok, A. Gafarov, A. Garmash, V. Grebenyuk, O. Gress, E. Gress, T. Gress, A. Grinyuk, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1039, 167047 (2022).

    Google Scholar 

  50. P. W. Cattaneo, HERD Collab., Nucl. Part. Phys. Proc. 306–308, 85 (2019).

    Google Scholar 

  51. S. Schael, A. Atanasyan, J. Berdugo, T. Bretz, M. Czupalla, B. Dachwald, P. von Doetinchem, M. Duranti, H. Gast, W. Karpinski, T. Kirn, K. Lübelsmeyer, C. Mana, P. S. Marrocchesi, P. Mertsch, I. V. Moskalenko, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 944, 162561 (2019).

    Google Scholar 

Download references

Funding

This study was supported by the Russian State Space Corporation ROSCOSMOS, in part by the Russian Ministry of Science and Higher Education, project ‘‘Fundamental and applied research of cosmic rays,’’ no. FSWU-2023-0068, and in part by the MEPhI Program Priority 2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Suchkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchiev, N.P., Galper, A.M., Arkhangelskaja, I.V. et al. Cosmophysical Research with GAMMA-400. Phys. Atom. Nuclei 86, 489–499 (2023). https://doi.org/10.1134/S1063778823040361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823040361

Navigation