Skip to main content
Log in

Microstructure and Mechanical Properties of Low-Activation V–4Ti–4Cr–(C, O, N) Vanadium Alloys Depending on Conditions of Their Technological and Thermomechanical Treatment

  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The results of investigations of the effect of thermomechanical treatment (TMT) regimes on the regularities of phase transformations, microstructure, and mechanical properties of low-activation alloys of the V–4Ti–4Cr–(C, O, N) system are summarized. The mechanisms of these transformations and the relationship between the microstructure and the level of strength and plasticity are established. The TMT regimes are presented that provide a uniform bulk distribution of nanosized particles of stable oxycarbonitride, a significant increase in their density (dispersion), and an increase in the thermal stability of the microstructure. It is shown that these regimes lead to a significant (by 30–60%) increase in the short-term strength of alloys in a wide (from 293 to 1073 K) temperature range with preservation of a sufficiently high plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. M. Potapenko, A. V. Vatulin, G. P. Vedernikov, I. N. Gubkin, V. A. Drobyshev, V. S. Zurabov, M. I. Solonin, V. M. Chernov, A. K. Shikov, I. P. Pazdnikov, and A. N. Rylov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (62), 152 (2004).

  2. T. Muroga, J. M. Chen, V. M. Chernov, and R. J. Kurtz, J. Nucl. Mater. 455, 263 (2014).

    Article  ADS  CAS  Google Scholar 

  3. T. Muroga, in Comprehensive Nuclear Materials (Elsevier Science, Amsterdam, 2012), Vol. 4, p. 391.

    Google Scholar 

  4. M. Koyama, K. Fukumoto, and H. Matsui, J. Nucl. Mater. 329–333, 442 (2004).

    Article  ADS  Google Scholar 

  5. K. Fukumoto, M. Narui, H. Matsui, T. Nagasaka, T. Muroga, M. Li, D. T. Hoelzer, and S. J. Zinkle, J. Nucl. Mater. 386–388, 618 (2009).

    Google Scholar 

  6. M. Hatekeyama, H. Watanabe, T. Muroga, and N. Yoshida, J. Nucl. Mater. 329–333, 420 (2004).

    Article  ADS  Google Scholar 

  7. A. D. Korotaev, A. N. Tyumentsev, Yu. P. Pinzhin, and S. V. Ovchinnikov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (62), 163 (2004).

  8. A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, I. A. Ditenberg, S. V. Litovchenko, Ya. V. Shuba, N.  V.  Shevchenko, V. A. Drobishev, M. M. Potapenko, and V. M. Chernov, J. Nucl. Mater. 329–333, 429 (2004).

    Article  ADS  Google Scholar 

  9. A. N. Tyumentsev, Yu. P. Pinzhin, S. V. Ovchinnikov, I. A. Ditenberg, A. D. Korotaev, Ya. V. Shuba, V. M. Chernov, and M. M. Potapenko, Perspekt. Mater., No. 1, 5 (2006).

  10. L. M. Kryukova, M. M. Potapenko, V. M. Chernov, A. N. Ivanov, A. N. Tyumentsev, Yu. P. Pinzhin, and S. V. Ovchinnikov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (66), 152 (2006).

  11. A. N. Tyumentsev, I. A. Ditenberg, K. V. Grinyaev, V. M. Chernov, and M. M. Potapenko, Deform. Razrush. Mater., No. 11, 28 (2011).

  12. A. N. Tyumentsev, I. A. Ditenberg, K. V. Grinyaev, V. M. Chernov, and M. M. Potapenko, J. Nucl. Mater. 413, 103 (2011).

    Article  ADS  CAS  Google Scholar 

  13. M. M. Potapenko, V. M. Chernov, V. A. Drobyshev, N. A. Degtyarev, M. V. Kravtsova, S. V. Ovchinnikov, A. N. Tyumentsev, I. A. Ditenberg, Yu. P. Pinzhin, and A. D. Korotaev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 1, 13 (2014).

  14. M. M. Potapenko, V. M. Chernov, V. A. Drobyshev, M. V. Kravtsova, I. E. Kudryavtseva, N. A. Degtyarev, S. V. Ovchinnikov, A. N. Tyumentsev, I. A. Ditenberg, Yu. P. Pinzhin, and A. D. Korotaev, Phys. At. Nucl. 78, 1087 (2015).

    Article  CAS  Google Scholar 

  15. M. M. Potapenko, A. K. Shikov, V. M. Chernov, G. P. Vedernikov, I. N. Gubkin, V. A. Drobyshev, and V. S. Zurabov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 1 (64), 340 (2005).

  16. A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, I. A. Ditenberg, V. A. Drobyshev, M. M. Potapenko, and V. M. Chernov, Vopr. At. Nauki Tekh., Ser.: Materialoved. Nov. Mater., No. 2 (63), 111 (2004).

  17. I. A. Ditenberg, A. N. Tyumentsev, V. M. Chernov, and M. M. Potapenko, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 28 (2011).

  18. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray and Electron-Optical Analysis (MISiS, Moscow, 2002) [in Russian].

  19. E. Fromm and E. Gebhardt, Gases and Carbon in Metals (Springer, Berlin, 1976).

    Google Scholar 

  20. H. I. Chang, R. K. Viswanadham, and C. A. Wert, Metall. Trans. 5, 1907 (1974).

    Article  CAS  Google Scholar 

  21. G. V. Samsonov and I. M. Vinitskii, The Refractory Compounds (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  22. A. D. Korotaev, A. N. Tyumentsev, M. G. Glazunov, L. M. Dizhur, A. I. Yakushina, S. P. Semkin, and T. I. Vitkovskaya, Fiz. Met. Metalloved. 52, 377 (1981).

    CAS  Google Scholar 

  23. F. Ostermann and F. Bollenrath, in High Temperature Materials, Ed. by F. Benesovsky (Reutte/Tyrol, Austria, Metallwerk Plansee AG, 1969), p. 317.

    Google Scholar 

  24. F. Ostermann, J. Less-Common Met. 25, 243 (1971).

    Article  CAS  Google Scholar 

  25. A. D. Korotaev, A. N. Tyumentsev, and V. F. Sukhovarov, Dispersion Hardening of Refractory Metals (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  26. A. N. Tyumentsev, Yu. P. Pinzhin, S. F. Tyumentseva, V. Ch. Gonchikov, A. D. Korotaev, V. N. Klimachev, A. A. Dement’ev, N. A. Kozhemyako, I. P. Druzhinina, G. N. Per’kova, and N. A. Zentsova, Metallofizika 11 (6), 21 (1989).

    CAS  Google Scholar 

  27. A. N. Tyumentsev, V. V. Manako, Yu. P. Pinzhin, and S. F. Tyumentseva, Metallofizika 13 (5), 69 (1991).

    CAS  Google Scholar 

  28. L. N. Larikov and V. I. Isaichev, Structure and Properties of Metals and Alloys. Diffusion in Metals and Alloys, The Handbook (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  29. V. I. Trefilov, Yu. V. Mil’man, and S. A. Firstov, Physical Basis of the Strength of Refractory Metals (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  30. A. N. Tyumentsev, A. D. Korotaev, I. A. Ditenberg, Yu. P. Pinzhin, and V. M. Chernov, Regularities of Plastic Deformation in High-Strength and Nanostructured Metallic Materials (Nauka, Novosibirsk, 2018) [in Russian].

    Google Scholar 

  31. J. W. Martin, Micromechanisms in Particle-Hardened Alloys (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  32. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  33. H. Conrad, in Ultrafine-Grain Metals, Ed. by J. J. Burke and V. Weiss (Syracuse Univ. Press, Syracuse, 1970).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is dedicated to the blessed memory of Valery Andreevich Drobyshev, Candidate of Technical Sciences, metallurgist, materials scientist and technologist, who died suddenly in December 2020. V.A. Drobyshev was an outstanding specialist in the field of metallurgy of low-activation vanadium alloys, their smelting, and processing into semifinished products and products. To a large extent, the vanadium alloys obtained by V.A. Drobyshev determined the general level of work on the production and use of vanadium alloys in Russia (Bochvar High-Technology Research Institute of Inorganic Materials) and their competitiveness with similar alloys from the United States and Japan.

Funding

The work was supported by the state task of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, topic no. FWRW-2021-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Tyumentsev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Bukhanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyumentsev, A.N., Ditenberg, I.A., Grinyaev, K.V. et al. Microstructure and Mechanical Properties of Low-Activation V–4Ti–4Cr–(C, O, N) Vanadium Alloys Depending on Conditions of Their Technological and Thermomechanical Treatment. Phys. Atom. Nuclei 86, 1564–1576 (2023). https://doi.org/10.1134/S1063778823070232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823070232

Keywords:

Navigation