Skip to main content
Log in

Peculiarities of Investigation of HTS Tape by Low-Temperature Magneto-Optical Visualization

  • MATERIALS AND TECHNOLOGIES FOR NEW SOURCES OF ENERGY
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this paper, we analyze in detail the features of the application of the magneto-optical imaging technique for studying HTS tapes. We present a detailed description of the experimental technique and features of the research facility for low temperatures research. The features of the penetration of a magnetic field into a superconductor are described, and the procedure for calibrating a magneto-optical film and algorithms for calculating magnetic field profiles from magneto-optical images are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. D. K. Supreeth et al., IEEE Trans. Appl. Supercond. 32 (3), 1 (2022).

    Article  Google Scholar 

  2. H. Zhang and M. Mueller, Supercond. Sci. Technol. 34, 045018 (2021).

  3. A. W. Zimmermann et al., Energy Rep. 6, 180 (2020).

    Article  Google Scholar 

  4. J. Ciceron et al., IEEE Trans. Appl. Supercond. 28, 5701005 (2018).

  5. D. Uglietti, Supercond. Sci. Technol. 32, 053001 (2019).

  6. Y. Zhai, T. Brown, J. E. Menard, D. C. van der Laan, J. D. Weiss, and Z. Johnson, IEEE Trans. Appl. Supercond. 32, 4203005 (2022).

  7. L. Rossi and C. Senatore, Instruments 5, 8 (2021). https://doi.org/10.3390/instruments5010008

    Article  CAS  Google Scholar 

  8. J. Zhu, S. Chen, and Z. Jin, Electronics 11, 297 (2022). https://doi.org/10.3390/electronics11030297

    Article  CAS  Google Scholar 

  9. E. H. Brandt, Science (Washington, DC, U. S.) 243, 4889 (1989).

    Article  Google Scholar 

  10. P. Bernstein and J. Noudem, Supercond. Sci. Technol. 33, 033001 (2020).

  11. F. N. Werfel et al., Supercond. Sci. Technol. 25, 014007 (2012).

  12. J. G. Webster, R. M. Stephan, R. de Andrade, A. C. Ferreira, and G. G. Sotelo, in Wiley Encyclopedy of Electronics and Electron Engineering (Wiley, 2017), p. 1.

    Google Scholar 

  13. J. Wang et al., Phys. C (Amsterdam, Neth.) 378–381, 809 (2002).

  14. L. Schultz et al., IEEE Trans. Appl. Supercond. 15, 2301 (2005).

    Article  ADS  Google Scholar 

  15. G. G. Sotelo, R. A. H. de Oliveira, F. S. Costa, D. H. N. Dias, R. de Andrade, and R. M. Stephan, IEEE Trans. Appl. Supercond. 25 (3), 1 (2015).

    Article  CAS  Google Scholar 

  16. Z. Deng et al., IEEE Trans. Appl. Supercond. 26, 3602408 (2016).

  17. www.theva.com/.

  18. S. Furtner, R. Nemetschek, R. Semerad, G. Sigl, and W. Prusseit, Supercond. Sci. Technol. 17, S281 (2004).

    Article  ADS  CAS  Google Scholar 

  19. R. Fuger, F. Hengstberger, M. Eisterer, and H. W. Weber, IEEE Trans. Appl. Supercond. 17, 3753 (2007).

    Article  ADS  CAS  Google Scholar 

  20. K. Higashikawa and K. Shiohara, IEEE Trans. Appl. Supercond. 22 (3), 5 (2012).

    Article  Google Scholar 

  21. Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmuller, Rep. Prog. Phys. 65, 651 (2002).

    Article  ADS  CAS  Google Scholar 

  22. T. H. Johansen and D. V. Shantsev, Magneto-Optical Imaging, Vol. 142 of NATO Science Ser. II: Mathematics, Physics and Chemistry (NATO, 2004).

  23. A. Villaume, L. Porcar, D. Bourgault, A. Antonevici, T. Caroff, J. P. Leggeri, and C. Villard, Supercond. Sci. Technol. 21, 034009 (2008).

  24. H. Song, M. W. Davidson, and J. Schwartz, Supercond. Sci. Technol. 22, 062001 (2009).

  25. Y. Jung, K. Kwak, W. Lee, J. Rhee, D. Youm, J. Yoo, Y. H. Han, and B. J. Park, Supercond. Sci. Technol. 25, 065001 (2012).

  26. X. Wang, Y. Kamiya, A. Ishiyama, M. Yagi, O. Maruyama, and T. Ohkuma, IEEE Trans. Appl. Supercond. 22, 5801004 (2012). https://doi.org/10.1109/TASC.2012.2184790

  27. D. Abraimov, A. Gurevich, A. Polyanskii, X. Y. Cai, A. Xu, S. Pamidi, D. Larbalestier, and C. L. H. Thieme, Supercond. Sci. Technol. 21, 082004 (2008).

  28. I. A. Rudnev and M. A. Osipov, Bull. Russ. Acad. Sci.: Phys. 77, 333 (2013).

    Article  CAS  Google Scholar 

  29. I. Rudnev and M. Osipov, J. Supercond. Nov. Magn. 27, 951 (2014).

    Article  CAS  Google Scholar 

  30. A. E. Primenko, M. A. Osipov, and I. A. Rudnev, Tech. Phys. 62, 1346 (2017).

    Article  CAS  Google Scholar 

  31. M. Faraday, Phil. Trois. Philos. Trans. R. Soc. London 136, 1 (1846). https://www.jstor.org/stable/108303.

  32. L. A. Dorosinskii, M. V. Indenbom, V. I. Nikitenko et al., Phys. C (Amsterdam, Neth.) 203, 149 (1992). https://doi.org/10.1016/0921-4534(92)90521-D

  33. C. P. Bean, Rev. Mod. Phys. 61, 31 (1964).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 23-19-00394, https://rscf.ru/project/23-19-00394/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Osipov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, M.A., Abin, D.A. & Rudnev, I.A. Peculiarities of Investigation of HTS Tape by Low-Temperature Magneto-Optical Visualization. Phys. Atom. Nuclei 86, 2020–2027 (2023). https://doi.org/10.1134/S1063778823090156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823090156

Keywords:

Navigation