Skip to main content
Log in

Features of Hydrogen Trapping under Irradiation of Zirconium Alloys with Electrons in Various Gaseous Ambient

  • SOLIDS UNDER EXTREME CONDITIONS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The features of hydrogen trapping under the irradiation of zirconium alloys E110 and E635 with an electron beam (400 eV, 0.8 mA/cm2) in various gaseous ambient containing oxygen and hydrogen (Ar + O2 + H2; Ar + H2O) are studied. The effect of surface temperature on the hydrogenation of zirconium alloys under electron irradiation is studied. It is shown that neither exposure nor electron irradiation in a gaseous ambient containing a mixture of H2 and O2 at 700 K for 20 h leads to a change in the hydrogen level in the E110 alloy, while hydrogen partially escapes from the E635 alloy during the experiment. The amount of hydrogen in zirconium alloys after exposure in a gaseous ambient containing H2O in a similar temperature–time regime also changes insignificantly; however, if the alloys are irradiated with electrons under these conditions, then they contain 1.5–2 times more hydrogen. When temperature of the samples is raised to 900 K, electron irradiation in the presence of water vapor, on the contrary, reduces the trapping of hydrogen in the E110 and E635 alloys, compared with exposure in the same gaseous ambient without irradiation. It is concluded that electron irradiation affects the balance of surface reactions of formation of hydroxyl groups from adsorbed water molecules and reverse reactions of formation of water molecules from surface hydroxyls. The direction of shifting the balance of these reactions depends on the surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. T. Motta, A. Couet, and R. J. Comstock, Ann. Rev. Mater. Res. 45, 311 (2015). https://doi.org/10.1146/annurev-matsci-070214-020951

    Article  ADS  CAS  Google Scholar 

  2. B. Cox, J. Nucl. Mater. 336, 331 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.029

    Article  ADS  CAS  Google Scholar 

  3. M. Slobodyan, Nucl. Eng. Des. 382, 111364 (2021). https://doi.org/10.1016/j.nucengdes.2021.111364

  4. A. T. Fromhold, Nature (London, U.K.) 200, 559 (1963). https://doi.org/10.1038/200559a0

    Article  ADS  CAS  Google Scholar 

  5. R. B. Beck, Appl. Surf. Sci. 35, 76 (1988–1989). https://doi.org/10.1016/0169-4332(88)90039-6

    Article  ADS  CAS  Google Scholar 

  6. D. A. Carl, D. W. Hess, M. A. Lieberman, T. D. Nguyen, and R. Gronsky, J. Appl. Phys. 70, 3301 (1991). https://doi.org/10.1063/1.349264

    Article  ADS  CAS  Google Scholar 

  7. V. Larionov, Yu. Tyurin, T. Murashkina, and T. Sigfusson, Condens. Matter 3, 17 (2018). https://doi.org/10.3390/condmat3020017

    Article  CAS  Google Scholar 

  8. Yu. Tyurin and I. Chernov, Int. J. Hydrogen Energy 27, 829 (2002). https://doi.org/10.1016/S0360-3199(01)00153-7

    Article  CAS  Google Scholar 

  9. Y. I. Tyurin, V. V. Larionov, I. P. Chernov, and E. A. Sklyarova, Tech. Phys. 81, 35 (2011). https://doi.org/10.1134/S1063784211010245

    Article  CAS  Google Scholar 

  10. V. Kurnaev, O. Afonin, A. Antipenkov, N. Koborov, T. Mukhammedzyanov, V. Ochkin, R. Pearce, E. Pleshkov, F. Podolyako, I. Sorokin, V. Urusov, I. Vizgalov, G. Voronov, K. Vukolov, L. Worh, and L-2M team, Fusion Eng. Des. 88, 1414 (2013). https://doi.org/10.1016/j.fusengdes.2012.12.022

    Article  CAS  Google Scholar 

  11. G. S. Voronov, M. S. Berezhetskii, Yu. F. Bondar’, I. Yu. Vafin, D. G. Vasil’kov, E. V. Voronova, S. E. Grebenshchikov, I. A. Grishina, N. F. Larionova, A. A. Letunov, V. P. Logvinenko, A. I. Meshcheryakov, E. I. Pleshkov, Yu. V. Khol’nov, O. I. Fedyanin, et al., Plasma Phys. Rep. 39, 277 (2013). https://doi.org/10.1134/S1063780X13040090

    Article  ADS  Google Scholar 

  12. A. E. Evsin, L. B. Begrambekov, A. I. Gumarov, A. S. Kaplevsky, A. G. Luchkin, L. R. Tagirov, and I. R. Vakhitov, Vacuum 129, 183 (2016). https://doi.org/10.1016/j.vacuum.2016.01.022

    Article  ADS  CAS  Google Scholar 

  13. L. B. Begrambekov, A. E. Evsin, A. V. Grunin, A. I. Gumarov, A. S. Kaplevsky, N. F. Kashapov, A. G. Luchkin, I. R. Vakhitov, I. V. Yanilkin, and L. R. Tagirov, Int. J. Hydrogen Energy 44, 17154 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.198

    Article  CAS  Google Scholar 

  14. C. Juillet, M. Tupin, F. Martin, Q. Auzoux, C. Berthinier, F. Miserque, and F. Gaudier, Int. J. Hydrogen Energy 44, 21264 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.034

    Article  CAS  Google Scholar 

  15. C. Juillet, M. Tupin, F. Martin, Q. Auzoux, S. Bosonnet, and C. Berthinier, Corros. Sci. 173, 108762 (2020). https://doi.org/10.1016/j.corsci.2020.108762

  16. G. P. Timkovskiy, A. E. Evsin, I. E. Kondratiev, S. S. Dovganyuk, I. D. Zhdanov, and L. B. Begrambekov, J. Phys.: Conf. Ser. 2036, 012033 (2021). https://doi.org/10.1088/1742-6596/2036/1/012033

  17. H. Nakatsuji, M. Hada, J. H. Ogawa, J. K. Nagata, and K. Domen, J. Phys. Chem. 98, 11840 (1994). https://doi.org/10.1021/j100097a008

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research and Rosatom State Corporation, project no. 20-21-00026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Evsin.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Sh. Galyaltdinov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evsin, A.E., Zhdanov, I.D., Kondratiev, I.E. et al. Features of Hydrogen Trapping under Irradiation of Zirconium Alloys with Electrons in Various Gaseous Ambient. Phys. Atom. Nuclei 86, 2068–2075 (2023). https://doi.org/10.1134/S1063778823100149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823100149

Keywords:

Navigation