Skip to main content
Log in

Modeling Radio Frequency Heating of Nanoparticles for Biomedical Applications

  • INTERACTION OF PLASMA, PARTICLE BEAMS, AND RADIATION WITH MATTER
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The paper presents the results of simulation of heat release in a biological environment under the influence of electromagnetic radiation of the radio frequency range for two types of solid-state nanoparticles. The advantage of gold nanoparticles over nanoparticles of crystalline silicon in terms of contribution to the overall heating of an aqueous solution of NaCl is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. P. Cherukuri, E. S. Glazer, and S. A. Curley, Adv. Drug Deliv. Rev. 62, 339 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. R. S. Milleron and S. B. Bratton, Cell. Mol. Life Sci. 64, 2329 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Z. Behrouzkia, Z. Joveini, B. Keshavarzi, N. Eyvazzadeh, and R. Z. Aghdam, Oman Med. J. 31, 89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. K. Kandala, A. Sharma, S. Mirpour, E. Liapi, R. Ivkov, and A. Attaluri, Int. J. Hypertherm. 38, 611 (2021).

    Article  CAS  Google Scholar 

  5. A. R. Tsiapla, A. A. Kalimeri, N. Maniotis, E. Myrovali, T. Samaras, M. Angelakeris, and O. Kalogirou, Int. J. Hypertherm. 38, 511 (2021).

    Article  CAS  Google Scholar 

  6. P. B. Balakrishnan, E. E. Sweeney, A. S. Ramanujam, and R. Fernandes, Int. J. Hypertherm. 37 (3), 34 (2020).

    Article  CAS  Google Scholar 

  7. I. Klein, S. Sarkar, J. Gutierrez-Aceves, and N. Levi, Int. J. Hypertherm. 38, 760 (2021).

    Article  CAS  Google Scholar 

  8. L. Bianchi, R. Mooney, Y. R. Cornejo, E. Schena, J. M. Berlin, K. S. Aboody, and P. Saccomandi, Int. J. Hypertherm. 38, 1099 (2021).

    Article  CAS  Google Scholar 

  9. H. P. Kok, E. Cressman, W. Ceelen, C. L. Brace, R. Ivkov, H. Grüll, G. Haar, P. Wust, and J. Crezee, Int. J. Hypertherm. 37, 711 (2020).

    Article  CAS  Google Scholar 

  10. M. Gongalsky, G. Gvindzhiliia, K. Tamarov, O. Shalygina, A. Pavlikov, V. Solovyev, A. Kudryavtsev, and V. Sivakov, ACS Omega 4, 10662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q. Deng, M. He, Ch. Fu, K. Feng, K. Ma, and L. Zhang, Int. J. Hypertherm. 39, 1052 (2022).

    Article  Google Scholar 

  12. R. Didarian and I. Vargel, IET Nanobiotechnol. 15, 639 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. V. Kabashin, K. P. Tamarov, Yu. V. Ryabchikov, L. A. Osminkina, S. V. Zinovyev, J. V. Kargina, M. B. Gongalsky, A. Al-Kattan, V. G. Yakunin, M. L. Sentis, A. V. Ivanov, V. N. Nikiforov, A. P. Kanavin, I. N. Zavestovskaya, and V. Yu. Timoshenko, Proc. SPIE 9737, 97370A (2016).

    Article  ADS  Google Scholar 

  14. A. A. Grigoriev, M. S. Grigoryeva, Yu. V. Kargina, A. Yu. Kharin, and I. N. Zavestovskaya, Bull. Lebedev Phys. Inst 48, 170 (2021).

    Article  ADS  Google Scholar 

  15. K. P. Tamarov, A. P. Kanavin, V. Yu. Timoshenko, A. V. Kabashin, and I. N. Zavestovskaya, Proc. SPIE 9737, 973706 (2016).

    Article  Google Scholar 

  16. K. Wang, Y. Zhao, D. Chen, et al., Sci. Data 4, 170015 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grigoriev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, A.A., Zavestovskaya, I.N. & Kanavin, A.P. Modeling Radio Frequency Heating of Nanoparticles for Biomedical Applications. Phys. Atom. Nuclei 86, 2459–2461 (2023). https://doi.org/10.1134/S1063778823110157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823110157

Keywords:

Navigation