Skip to main content
Log in

Dynamics of higher spin gauge fields in AdS d space of dimension d ≥ 5

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this overview, the framelike formulation of the dynamics of massless gauge fields of arbitrary spin propagating in Minkowski and (anti-)de Sitter spaces of an arbitrary dimension is discussed. In the framework of the framelike description, the notions of the higher spin field, gauge symmetries and gauge-invariant field strengths are introduced. The general procedure of construction of explicit gauge-invariant action functionals for free higher spin fields is discussed, and some substantial examples of action for fields of particular spins are given. The proposed framelike formulation is an efficient tool for the construction of interaction of higher spin fields on the background of anti-de Sitter geometry. As an example, the nonlinear AdS 5 N = 1 SUSY higher spin field theory describing the interaction of massless higher spin fields between themselves and with gravity in the cubic approximation of action functional is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Aragone and S. Deser, Phys. Lett. B 86, 161 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. A. Vasiliev, “Higher Spin Gauge Theories: Star-Product and AdS Space,” contributed article to Golfand’s Memorial Volume Many Faces of the Superworld, Ed. by M. Shifman (World Sci., Singapore, 2000); hep-th/9910096; Int. J. Mod. Phys. D 5, 763 (1996); hep-th/9611024.

    Google Scholar 

  3. E. S. Fradkin and M. A. Vasiliev, Ann. Phys. 177, 63 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  4. E. S. Fradkin and M. A. Vasiliev, Phys. Lett. B 189, 89 (1987); Nucl. Phys. B 291, 141 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. A. K. Bengtsson, I. Bengtsson, and L. Brink, Nucl. Phys. B 227, 31, 41 (1983).

    Article  ADS  Google Scholar 

  6. F. A. Berends, G. J. Burgers, and H. van Dam, Z. Phys. C 24, 247 (1984); Nucl. Phys. B 260, 295 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  7. A. K. H. Bengtsson and I. Bengtsson, Class. Quantum. Grav. 3, 927 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. K. H. Bengtsson, Class. Quantum. Grav. 5, 437 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  9. E. S. Fradkin and R. R. Metsaev, Class. Quantum. Grav. 8, L89 (1991); R. R. Metsaev, Mod. Phys. Lett. A 6, 359, 2411 (1991); Mod. Phys. Lett. A 8, 2413 (1993); Class. Quantum Grav. 10, L39 (1993); Phys. Lett. B 309, 39 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. D. J. Gross, Phys. Rev. Lett. 60, 1229 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  11. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); Int. J. Theor. Phys. 38, 1113 (1999); hep-th/9711200.

    MATH  MathSciNet  ADS  Google Scholar 

  12. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998); hep-th/9802109.

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); hep-th/9802150.

    MATH  MathSciNet  Google Scholar 

  14. A. A. Tseytlin, Teor. Mat. Fiz. 133, 69 (2002) [Theor. Math. Phys. 133, 1376 (2002)]; hep-th/0201112.

    MathSciNet  Google Scholar 

  15. B. Sundborg, Nucl. Phys. (Proc. Suppl.) 102, 113 (2001); hep-th/0103247.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. E. Witten, presented at J. H. Schwarz 60-th Birthday Conference, CalTech, 2001, http://theory.caltech.edu/jhs60/witten/1.html.

  17. S. E. Konstein, M. A. Vasiliev, and V. N. Zaikin, J. High Energy Phys. 0012, 018 (2000); hep-th/0010239.

    Article  MathSciNet  ADS  Google Scholar 

  18. M. A. Vasiliev, Phys. Rev. D 66, 066006 (2002); hep-th/0106149.

  19. O. V. Shaynkman and M. A. Vasiliev, Teor. Mat. Fiz. 128, 378 (2001) [Theor. Math. Phys. 128, 1155 (2001)]; hep-th/0103208.

    MATH  Google Scholar 

  20. E. Sezgin and P. Sundell, Nucl. Phys. B 644, 303 (2002); 660, 403(E) (2003); hep-th/0205131.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 550, 213 (2002); hep-th/0210114.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. T. Leonhardt, A. Meziane, and W. Ruhl, Phys. Lett. B 555, 271 (2003); hep-th/0211092; T. Leonhardt and W. Ruhl, “The Minimal Conformal O(N) Vector Sigma Model at d = 3,” hep-th/0308111.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. A. C. Petkou, J. High Energy Phys. 0303, 049 (2003); hep-th/0302063; R. G. Leigh and A. C. Petkou, J. High Energy Phys. 0306, 011 (2003); htp-th/034217.

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Dhar, G. Mandal, and S.R. Wadia, “String Bits in Small Radius AdS and Weakly Coupled N = 4 Super Yang-Mills Theory. I,” hep-th/0304062.

  25. A. Clark, A. Karch, P. Kovtun, and D. Yamada, Phys. Rev. D 68, 066011 (2003); hep-th/0304107.

    Google Scholar 

  26. S. R. Das and A. Jevicki, Phys. Rev. D 68, 044011 (2003); hep-th/0304093.

  27. M. Bianchi, J. F. Morales, and H. Samtleben, J. High Energy Phys. 0307, 062 (2003); hep-th/0305052.

    Article  MathSciNet  ADS  Google Scholar 

  28. U. Lindstrom and M. Zabzine, “Tensionless Strings, WZW Models at Critical Level and Massless Higher Spin Fields,” hep-th/0305098.

  29. R. Gopakumar, “From Free Fields to AdS,” hep-th/0308184.

  30. R. G. Leigh and A. C. Petkou, “SL(2,Z) Action on Three-Dimensional CFTs and Holography,” hep-th/0309177.

  31. G. Bonelli, J. High Energy Phys. 0311, 028 (2003); hep-th/0309222.

    Article  MathSciNet  ADS  Google Scholar 

  32. H. J. Schnitzer, “Gauged Vector Models and Higher-Spin Representations in AdS(5),” hep-th/0310210.

  33. M. A. Vasiliev, Nucl. Phys. B 616, 106 (2001); 652, 407(E) (2003); hep-th/0106200.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. M. A. Vasiliev, Phys. Lett. B 243, 378 (1990); Phys. Lett. B 285, 225 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  35. M. A. Vasiliev, Phys. Lett. B 567, 139 (2003); hep-th/0304049.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. M. Fierz and W. Pauli, Proc. R. Soc. London, Ser. A 173, 211 (1939).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. L. Singh and C. Hagen, Phys. Rev. D 9, 898, 910 (1974).

    Article  ADS  Google Scholar 

  38. C. Fronsdal, Phys. Rev. D 18, 3624 (1978); J. Fang and C. Fronsdal, Phys. Rev. D 18, 3630 (1978).

    Article  ADS  Google Scholar 

  39. T. Curtright, Phys. Lett. B 85, 219 (1979).

    Article  ADS  Google Scholar 

  40. B. de Wit and D.Z. Freedman, Phys. Rev. D 21, 358 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  41. M. A. Vasiliev, Yad. Fiz. 32, 855 (1980) [Sov. J. Nucl. Phys. 32, 439 (1980)].

    Google Scholar 

  42. T. Curtright, Phys. Lett. B 165, 304 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  43. C. S. Aulakh, I. G. Koh, and S. Ouvry, Phys. Lett. B 173, 284 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  44. W. Siegel and B. Zwiebach, Nucl. Phys. B 282, 125 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  45. J. M. F. Labastida and T. R. Morris, Phys. Lett. B 180, 101 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  46. J. M. F. Labastida, Phys. Rev. Lett. 58, 531 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  47. J. M. F. Labastida, Nucl. Phys. B 322, 185 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  48. A. Pashnev and M. M. Tsulaia, Mod. Phys. Lett. A 12, 861 (1997); hep-th/9703010; Mod. Phys. Lett. A 13, 1853 (1998); hep-th/9803207; C. Burdik, A. Pashnev, and M. Tsulaia, Mod. Phys. Lett. A 16, 731 (2001); hep-th/0101201; Nucl. Phys. (Proc. Suppl.) 102, 285 (2001); hep-th/0103143.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. D. Francia and A. Sagnotti, Phys. Lett. B 543, 303 (2002); hep-th/0207002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. X. Bekaert and N. Boulanger, “Tensor Gauge Fields in Arbitrary Representations of GL(D,R): Duality and Poincaré Lemma,” hep-th/0208058.

  51. X. Bekaert and N. Boulanger, Phys. Lett. B 561, 183 (2003); hep-th/0301243.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. P. de Medeiros and C. Hull, J. High Energy Phys. 0305, 019 (2003); hep-th/0303036.

    Article  Google Scholar 

  53. C. Fronsdal, Phys. Rev. D 20, 848 (1979); J. Fang and C. Fronsdal, Phys. Rev. D 22, 1361 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  54. M. A. Vasiliev, Fortsch. Phys. 35, 741 (1987).

    MathSciNet  ADS  Google Scholar 

  55. V. E. Lopatin and M.A. Vasiliev, Mod. Phys. Lett. A 3, 257 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  56. M. A. Vasiliev, Nucl. Phys. B 301, 26 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  57. R. R. Metsaev, Phys. Lett. B 354, 78 (1995); Phys. Lett. B 419, 49 (1998); hep-th/9802097; presented at International Seminar on Supersymmetries and Quantum Symmetries (Dedicated to the Memory of Victor I. Ogievetsky), Dubna, Russia, 1997.

    Article  MathSciNet  ADS  Google Scholar 

  58. L. Brink, R. R. Metsaev, and M. A. Vasiliev, Nucl. Phys. B 586, 183 (2000); hep-th/0005136.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  59. S. Deser and A. Waldron, Nucl. Phys. B 607, 577 (2001); hep-th/0103198.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  60. I. L. Buchbinder, A. Pashnev, and M. Tsulaia, Phys. Lett. B 523, 338 (2001); hep-th/0109067.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. R. R. Metsaev, Phys. Lett. B 531, 152 (2002); hep-th/0201226.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. T. Biswas and W. Siegel, J. High Energy Phys. 207, 005 (2002); hep-th/0203115.

    Article  MathSciNet  ADS  Google Scholar 

  63. E. Sezgin and P. Sundell, J. High Energy Phys. 0109, 025 (2001); hep-th/0107186.

    Article  MathSciNet  ADS  Google Scholar 

  64. Y. M. Zinoviev, “On Massive Mixed Symmetry Tensor Fields in Minkowski Space and (A)dS,” hep-th/0211233.

  65. Y. M. Zinoviev, “First Order Formalism for Mixed Symmetry Tensor Fields,” hep-th/0304067.

  66. O. V. Shaynkman and M. A. Vasiliev, Teor. Mat. Fiz. 123, 323 (2000) [Theor. Math. Phys. 123, 683 (2000)]; hep-th/0003123.

    MATH  Google Scholar 

  67. C. Hull, J. High Energy Phys. 0109, 027 (2001); hep-th/0107149.

    Article  MathSciNet  ADS  Google Scholar 

  68. P. de Medeiros and C. Hull, Commun. Math. Phys. 235, 255 (2003); hep-th/0208155.

    Article  MATH  ADS  Google Scholar 

  69. H. Casini, R. Montemayor, and L. F. Urrutia, Phys. Rev. D 68, 065011 (2003).

    Google Scholar 

  70. N. Boulanger, S. Cnockaert, and M. Henneaux, J. High Energy Phys. 0306, 060 (2003); hep-th/0306023.

    Article  MathSciNet  ADS  Google Scholar 

  71. K. Stelle and P. West, Phys. Rev. D 21, 1466 (1980); C. R. Preitschopf, and M. A. Vasiliev, “The Superalgebraic Approach to Supergravity,” in Proceedings of 31st International Ahrenshoop Symposium on The Theory of Elementary Particles (Wiley-VCH, Berlin, 1998).

    Article  MathSciNet  ADS  Google Scholar 

  72. S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38, 739 (1977); 38, 1376(E) (1977); F. Mansouri, Phys. Rev. D 16, 2456 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  73. S. E. Konstein and M. A. Vasiliev, Nucl. Phys. B 312, 402 (1989).

    Article  ADS  Google Scholar 

  74. P. de Medeiros, “Massive Gauge-Invariant Field Theories on Spaces of Constant Curvature,” hep-th/0311254.

  75. E. S. Fradkin and V. Ya. Linetsky, Ann. Phys. 198, 252 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  76. E. Sezgin and P. Sundell, J. High Energy Phys. 0109, 036 (2001); hep-th/0105001.

    Article  MathSciNet  ADS  Google Scholar 

  77. P. K. Townsend, Phys. Rev. D 15, 2804 (1977).

    MathSciNet  ADS  Google Scholar 

  78. R. R. Metsaev, “IIB Supergravity and Various Aspects of Light-Cone Formalism in AdS Space-Time,” hep-th/0002008.

  79. E. S. Fradkin and V. Ya. Linetsky, Mod. Phys. Lett. A 4, 2363 (1989).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  80. M. Gunaydin and D. Minic, Nucl. Phys. B 523, 145 (1998); hep-th/9802047.

    Article  MathSciNet  ADS  Google Scholar 

  81. W. Nahm, Nucl. Phys. B 135, 149 (1978).

    Article  ADS  Google Scholar 

  82. M. A. Vasiliev, Fortsch. Phys. 36, 33 (1988).

    MathSciNet  ADS  Google Scholar 

  83. F. A. Berends, J. W. van Holten, P. van Niewenhuizen, and B. de Wit, J. Phys. A 13, 1643 (1980).

    Article  ADS  Google Scholar 

  84. E. S. Fradkin and V. Ya. Linetsky, Nucl. Phys. B 350, 274 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  85. M. A. Vasiliev, J. High Energy Phys. 0412, 046 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  86. M. A. Vasiliev, “Actions, Charges and Off-Shell Fields in the Unfolded Dynamics Approach,” hep-th/0504090.

  87. K. B. Alkalaev, Phys. Lett. B 519, 121 (2001).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  88. K. B. Alkalaev and M.A. Vasiliev, Nucl. Phys. B 655, 57 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  89. K. B. Alkalaev, O. V. Shaynkman, and M. A. Vasiliev, Nucl. Phys. B 692, 363 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. K. B. Alkalaev, Teor. Mat. Fiz. 140, 424 (2004).

    MathSciNet  Google Scholar 

  91. K. B. Alkalaev, “Mixed-Symmetry Massless Gauge Fields in AdS 5,” hep-th/0501105.

  92. K. B. Alkalaev, O. V. Shaynkman, and M. A. Vasiliev, “Lagrangian Formulation for Free Mixed-Symmetry Bosonic Gauge Fields in (A)dS d ,” hep-th/0501108.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.B. Alkalaev, 2006, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2006, Vol. 37, No. 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkalaev, K.B. Dynamics of higher spin gauge fields in AdS d space of dimension d ≥ 5. Phys. Part. Nuclei 37, 735–775 (2006). https://doi.org/10.1134/S1063779606050030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779606050030

PACS numbers

Navigation