Skip to main content
Log in

Upper critical field and (non)-superconductivity of magnetars

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We construct equilibrium models of compact stars using a realistic equation of state and obtain the density range occupied by the proton superconductor in strong B-fields. We do so by combining the density profiles of our models with microscopic calculations of proton pairing gaps and the critical unpairing field H c2 above which the proton type-II superconductivity is destroyed. We find that magnetars with interior homogeneous field within the range 0.1 ≤ B 16 ≤ 2, where B 16 = B/1016 G, are partially superconducting, whereas those with B 16 > 2 are void of superconductivity. We briefly discuss the neutrino emissivity and superfluid dynamics of magnetars in the light of their (non)-superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Akgün and I. Wasserman, “Toroidal magnetic fields in type II superconducting neutron stars,” Mon. Not. RAS 383. 1551 (2008).

    Article  ADS  Google Scholar 

  2. S. K. Lander, N. Andersson, and K. Glampedakis, “Magnetic neutron star equilibria with stratification and type II superconductivity,” Mon. Not. RAS 419, 732 (2012)

    Article  ADS  Google Scholar 

  3. S. K. Lander, “Magnetic fields in superconducting neutron stars,” Phys. Rev. Lett. 110(7), 071101 (2013)

    Article  ADS  Google Scholar 

  4. S. K. Lander, “The contrasting magnetic fields of superconducting pulsars and magnetars,” Mon. Not. RAS 437, 424 (2014).

    Article  ADS  Google Scholar 

  5. K. T. Henriksson and I. Wasserman, “Poloidal magnetic fields in superconducting neutron stars,” Mon. Not. RAS 431, 2986 (2013).

    Article  ADS  Google Scholar 

  6. M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak, “Rotating neutron star models with a magnetic field,” Astron. Astrophys. 301, 757 (1995).

    ADS  Google Scholar 

  7. J. Frieben and L. Rezzolla, “Equilibrium models of relativistic stars with a toroidal magnetic field,” Mon. Not. RAS 427, 3406 (2012).

    Article  ADS  Google Scholar 

  8. A. D. Sedrakian and D. M. Sedrakian, “Superfluid core rotation in pulsars. I. Vortex cluster dynamics,” Astrophys. J. 447, 305 (1995).

    Article  ADS  Google Scholar 

  9. W. Zuo, et al., “S0 proton and neutron superfluidity in ß-stable neutron star matter,” Physics Letters B 595, 44 (2004).

    Article  ADS  Google Scholar 

  10. G. Colucci and A. Sedrakian, “Equation of state of hypernuclear matter: Impact of hyperon-scalar-meson couplings,” Phys. Rev. C 87 (5), 055806 (2013).

    Article  ADS  Google Scholar 

  11. T. Alm, G. Röpke, A. Sedrakian, and F. Weber, “3D2 pairing in asymmetric nuclear matter,” Nucl. Phys. A 604, 491 (1996).

    Article  ADS  Google Scholar 

  12. D. Bandyopadhyay, S. Chakrabarty, P. Dey, and S. Pal, “Rapid cooling of magnetized neutron stars,” Phys. Rev. D 58 (12), 121301 (1998)

    Article  ADS  Google Scholar 

  13. L. B. Leinson and A. Pérez, “Direct URCA process in neutron stars with strong magnetic fields,” JHEP 9, 20 (1998).

    Article  ADS  Google Scholar 

  14. D. A. Baiko and D. G. Yakovlev, “Direct URCA process in strong magnetic fields and neutron star cooling,” Astron. Astrophys. 342, 192 (1999).

    ADS  Google Scholar 

  15. E. N. E. van Dalen, A. E. L. Dieperink, A. Sedrakian, and R. G. E. Timmermans, “Neutrino-pair emission in a strong magnetic field,” Astron. Astrophys. 360, 549 (2000).

    ADS  Google Scholar 

  16. E. Flowers, M. Ruderman, and P. Sutherland, “Neutrino pair emission from finite-temperature neutron superfluid and the cooling of young neutron stars,” Astrophys. J. 205, 541 (1976).

    Article  ADS  Google Scholar 

  17. L. B. Leinson and A. Pérez, “Vector current conservation and neutrino emission from singlet-paired baryons in neutron stars,” Phys. Lett. B 638, 114 (2006).

    Article  ADS  Google Scholar 

  18. A. Sedrakian, H. Müther, and P. Schuck, “Vertex renormalization of weak interactions and cooper-pair breaking in cooling compact stars,” Phys. Rev. C 76 (5), 055805 (2007)

    Article  ADS  Google Scholar 

  19. A. Sedrakian, “Vertex renormalization of weak interactions in compact stars: Beyond leading order,” Phys. Rev. C 86 (2), 025803 (2012).

    Article  ADS  Google Scholar 

  20. E. E. Kolomeitsev and D. N. Voskresensky, “Neutrino emission due to cooper-pair recombination in neutron stars reexamined,” Phys. Rev. C 77 (6), 065808 (2008).

    Article  ADS  Google Scholar 

  21. P. Goldreich and P. Reisenegger, “A magnetic field decay in isolated neutron stars,” Astrophys. J. 395, 250 (1992).

    Article  ADS  Google Scholar 

  22. D. A. Aguilera, J. A. Pons, and J. A. Miralles, “The impact of magnetic field on the thermal evolution of neutron stars,” Astrophys. J. Lett. 673, L167 (2008)

    Article  ADS  Google Scholar 

  23. J. A. Pons, J. A. Miralles, and U. Geppert, “Magnetothermal evolution of neutron stars,” Astron. Astrophys. 496, 207 (2009).

    Article  MATH  ADS  Google Scholar 

  24. G. Baym, C. Pethick, and D. Pines, “Electrical conductivity of neutron star matter,” Nature 224, 674 (1969).

    Article  ADS  Google Scholar 

  25. E. Østgaard and D. G. Yakovlev, “Electrical conductivity of neutron star cores in the presence of strong magnetic fields P. Effects of interactions and superfluidity of nucleons,” Nucl. Phys. A 540, 211 (1992).

    Article  ADS  Google Scholar 

  26. A. Sedrakian, “Damping of differential rotation in neutron stars,” Phys. Rev. D 58, 021301 (R) (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sedrakian.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, M., Sedrakian, A. Upper critical field and (non)-superconductivity of magnetars. Phys. Part. Nuclei 46, 826–829 (2015). https://doi.org/10.1134/S1063779615050275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615050275

Keywords

Navigation