Skip to main content
Log in

Status of the MAJORANA DEMONSTRATOR

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultralow background, 40-kg modular high purity Ge (HPGe) detector array to search for neutrinoless double-beta decay (0νββ-decay) in 76Ge. The goal of the experiment is to demonstrate a background rate at or below 3 counts/(t-y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ-decay. In this paper, the status of the MAJORANA DEMONSTRATOR, including its design and measurements of properties of the HPGe crystals is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Camilleri, E. Lisi, and J. F. Wilkerson, “Neutrino masses and mixings: Status and prospects,” Ann. Rev. Nucl. Part. Sci. 58, 343–369 (2008).

    Article  ADS  Google Scholar 

  2. F. T. Avignone, S. R. Elliott and J. Engel, “Double beta decay, Majorana neutrinos, and neutrino nass,” Rev. Mod. Phys. 80, 481–516 (2008).

    Article  ADS  Google Scholar 

  3. M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity. Amsterdam: North-Holland (1979).

    Google Scholar 

  4. R. N. Mohapatra and G. Senjanovic, “Neutrino mass and spontaneous parity violation,” Phys. Rev. Lett. 44, 912–915 (1980).

    Article  ADS  Google Scholar 

  5. J. Vergados, H. Ejiri, and F. Simkovic, “Theory of neutrinoless double-beta decay,” Rept. Prog. Phys. 75, 106301 (2012).

    Article  ADS  Google Scholar 

  6. L. Baudis et al. (The Heidelberg-Moscow experiment), “Limits on the Majorana neutrino mass in the 0.1 eV range,” Phys. Rev. Lett. 83, 41–44 (1999).

    Article  ADS  Google Scholar 

  7. C. E. Aalseth et al. (The IGEX Collab.), “IGEX 76Ge neutrinoless double-beta decay experiment: Prospects for next generation experiments,” Phys. Rev. D 65, 092007 (2002).

    Article  ADS  Google Scholar 

  8. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “The evidence for the observation of 0nu beta beta decay: The identification of 0nu beta beta events from the full spectra,” Mod. Phys. Lett. A21, 1547–1566 (2006).

  9. M. Agostini et al. (The GERDA Collab.), “Results on neutrinoless double- decay of 76Ge from phase I of the GERDA experiment,” Phys. Rev. Lett. 111, 122503 (2013).

    Article  ADS  Google Scholar 

  10. A. Gando et al. (The KamLAND-Zen experiment), “Limit on neutrinoless decay of 136Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76Ge,” Phys. Rev. Lett. 110, 062502 (2013).

    Article  ADS  Google Scholar 

  11. J. B. Albert et al. (The EXO Collab.), “Improved measurement of the half-life of 136Xe with the EXO-200 detector,” Phys. Rev. C 89, 015502 (2014).

    Article  ADS  Google Scholar 

  12. N. Abgrall et al. (The MAJORANA Collab.), “The Majorana Demonstrator neutrinoless double-beta decay experiment,” Adv. High Energy Phys., 365432 (2014).

    Google Scholar 

  13. W. Bugg, Yu. Efremenko, and S. Vasilyev, “Large plastic scintillator panels with WLS fiber readout: Optimization of components,” Nucl. Instr. Meth. A 758, 91–96 (2014).

    Article  ADS  Google Scholar 

  14. J. Heise, “The Sanford underground research facility at Homestake,” arXiv:1503.01112v2 [physics-ins.det]

  15. E. W. Hoppe, E. E. Mintzer, C. E. Aalseth, D. J. Edwards, O. T. Farmer III, J. E. Fast, D. C. Gerlach, M. Liezers, and H. S. Miley, “Microscopic evaluation of contaminants in ultra-high purity copper,” J. Radioanal. Nucl. Chem. 282, 315–320 (2009).

    Article  Google Scholar 

  16. Meriden, Connecticut, USA: Canberra Industries, 2009.

  17. Oak Ridge, Tennessee, USA: ORTEC, 2009.

  18. M. A. Howe, G. A. Cox, P. J. Harvey, F. McGirt, K. Rielage, J. F. Wilkerson, and J. M. Wouters, “Sudbury neutrino observatory neutral current detector acquisition software overview,” Proceedings of IEEE Transactions on Nuclear Science, 2004, vol. 51, pp. 878–883.

    Google Scholar 

  19. P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, “Low capacitance large volume shapedfield germanium detector,” Proceedings of IEEE Transactions on Nuclear Science, 1989, vol. 36, pp. 926–930.

    Google Scholar 

  20. P. S. Barbeau, J. I. Collar, and O. Tench, “Large-mass ultralow noise germanium detectors: Performance and applications in neutrino and astroparticle physics,” JCAP 2007 (09), 9 (2007).

    Article  Google Scholar 

  21. D. Budjas, M. B. Heider, O. Chkvorets, N. Khanbekov, and S. Schonert, “Pulse shape discrimination studies with a broad energy germanium detector for signal identification and background suppression in the GERDA double beta decay experiment,” JINST 4, 1–23 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Vasilyev.

Additional information

Talk at The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–8, 2015, Valday, Russia.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, S., Abgrall, N., Arnquist, I.J. et al. Status of the MAJORANA DEMONSTRATOR. Phys. Part. Nuclei 48, 27–33 (2017). https://doi.org/10.1134/S1063779616060253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616060253

Navigation