Skip to main content
Log in

Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The ignition dynamics of a CH4: O2: N2: Ar = 1: 4: 15: 80 mixture by a high-voltage nanosecond discharge is simulated numerically with allowance for experimental data on the dynamics of the discharge current and discharge electric field. The calculated induction time agrees well with experimental data. It is shown that active particles produced in the discharge at a relatively low deposited energy can reduce the induction time by two orders of magnitude. Comparison of simulation results for mixtures with and without nitrogen shows that addition of nitrogen to the mixture leads to a decrease in the average electron energy in the discharge and gives rise to new mechanisms for accumulation of oxygen atoms due to the excitation of nitrogen electronic states and their subsequent quenching in collisions with oxygen molecules. Acceleration of the discharge-initiated ignition is caused by a faster initiation of chain reactions due to the production of active particles, first of all oxygen atoms, in the discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Starikovskaia, J. Phys. D 39, R265 (2006).

    Article  ADS  Google Scholar 

  2. S. A. Bozhenkov, S. M. Starikovskaia, and A. Yu. Starikovskii, Combust. Flame 133, 133 (2003).

    Article  Google Scholar 

  3. N. Chintala, A. Bao, G. Lou, and I. V. Adamovich, Combust. Flame 144, 744 (2006).

    Article  Google Scholar 

  4. S. V. Pancheshnyi, D. A. Lacoste, A. Bourdon, and C. Laux, IEEE Trans. Plasma Sci. 34, 2478 (2006).

    Article  ADS  Google Scholar 

  5. A. Yu. Starikovskii, Fiz. Goreniya Vzryva, No. 6, 12 (2003).

  6. I. V. Kochetov, A. P. Napartovich, and S. B. Leonov, Khim. Vys. Energ. 40, 126 (2006).

    Google Scholar 

  7. S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, IEEE Trans. Plasma Sci. 34, 2514 (2006).

    Article  ADS  Google Scholar 

  8. S. B. Leonov, D. A. Yarantsev, A. P. Napartovich, and I. V. Kochetov, Plasma Sci. Technol. 9, 760 (2007).

    Article  ADS  Google Scholar 

  9. G. V. Naidis, J. Phys. D 40, 4525 (2007).

    Article  ADS  Google Scholar 

  10. I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., J. Phys. D 41, 032 002 (2008).

    Article  Google Scholar 

  11. I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 154, 569 (2008).

    Article  Google Scholar 

  12. I. N. Kosarev, N. L. Aleksandrov, S. V. Kindysheva, et al., Combust. Flame 156, 221 (2009).

    Article  Google Scholar 

  13. I. V. Adamovich, I. Choi, N. Jiang, et al., Plasma Sources Sci. Technol. 18, 034018 (2009).

    Article  ADS  Google Scholar 

  14. S. Williams, S. Popovic, L. Vuskovic, et al., in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, Paper AIAA-2004-1012.

  15. A. M. Starik and N. S. Titova, Zh. Tekh. Fiz. 74(9), 15 (2004) [Tech. Phys. 49, 1116 (2004)].

    Google Scholar 

  16. S. M. Starikovskaya, N. L. Aleksandrov, I. N. Kosarev, et al., Khim. Vys. Énerg. 43, 259 (2009).

    Google Scholar 

  17. S. M. Starikovskaia, E. N. Kukaev, A. Yu. Kuksin, et al., Combust. Flame 139, 177 (2004).

    Article  Google Scholar 

  18. B. Eliasson and U. Kogelschatz, Report No. KLR-86-11C (Brown Boveri Forschungszentrum, Baden, 1986).

  19. O. V. Braginskiy, A. N. Vasilieva, K. S. Klopovskiy, et al., J. Phys. D 38, 3609 (2005).

    Article  ADS  Google Scholar 

  20. A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).

    Article  ADS  Google Scholar 

  21. N. A. Popov, Fiz. Plazmy 27, 940 (2001) [Plasma Phys. Rep. 27, 886 (2001)].

    Google Scholar 

  22. J. M. Rodrigues, A. Agneray, X. Jaffrezic, et al., Plasma Sources Sci. Technol. 16, 161 (2007).

    Article  ADS  Google Scholar 

  23. N. L. Aleksandrov, S. V. Kindysheva, I. N. Kosarev, and A. Yu. Starikovskii, J. Phys. D 41, 215 207 (2008).

    Article  Google Scholar 

  24. J. L. Delcroix, C. M. Ferreira, and A. Ricard, in Principles of Laser Plasmas, Ed. by G. Bekefi (Wiley, New York, 1976; Énergoizdat, Moscow, 1982).

    Google Scholar 

  25. J. E. Velazco, J. H. Kolts, and D. W. Setser, J. Chem. Phys. 65, 3468 (1976).

    Article  ADS  Google Scholar 

  26. B. M. Smirnov, Excited Atoms (Énergoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  27. J. Balamuta, M. F. Golde, and A. M. Moyle, J. Chem. Phys. 82, 3169 (1985).

    Article  ADS  Google Scholar 

  28. M. P. Iannuzzi, J. B. Jeffries, and F. Kaufman, Chem. Phys. Lett. 87, 570 (1982).

    Article  ADS  Google Scholar 

  29. A. R. DeSousa, M. Touzeau, and M. Petitdidier, Chem. Phys. Lett. 121, 423 (1985).

    Article  ADS  Google Scholar 

  30. L. G. Piper, J. Chem. Phys. 88, 6911 (1988).

    Article  ADS  Google Scholar 

  31. L. G. Piper, J. Chem. Phys. 88, 231 (1988).

    Article  ADS  Google Scholar 

  32. D. I. Slovetskii, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  33. L. G. Piper, G. E. Caledonia, and J. P. Kennealy, J. Chem. Phys. 75, 2847 (1981).

    Article  ADS  Google Scholar 

  34. L. G. Piper, J. Chem. Phys. 87, 1625 (1987).

    Article  ADS  Google Scholar 

  35. I. A. Kossyi, A. Yu. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  36. J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999).

    Article  ADS  Google Scholar 

  37. C. D. Pintassilgo, J. Loureiro, G. Cernogora, and M. Touzeau, Plasma Sources Sci. Technol. 8, 463 (1999).

    Article  ADS  Google Scholar 

  38. L. G. Piper, J. Chem. Phys. 97, 270 (1992).

    Article  ADS  Google Scholar 

  39. L. G. Piper, J. Chem. Phys. 87, 1625 (1987).

    Article  ADS  Google Scholar 

  40. M. J. McEwan and L. F. Phillips, Chemistry of the Atmosphere (Halsted, New York, 1975; Mir, Moscow, 1978).

    Google Scholar 

  41. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).

    Article  ADS  Google Scholar 

  42. D. R. Bates, Astrophys. J. 306, L45 (1986).

    Article  ADS  Google Scholar 

  43. W. J. Marinelli, W. J. Kessler, B. D. Green, and W. A. M. Blumberg, J. Chem. Phys. 90, 2167 (1989).

    Article  ADS  Google Scholar 

  44. I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynskii, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966; Atomizdat, Moscow, 1969).

    Google Scholar 

  45. V. Hayashi, in Swarm Studies and Inelastic Electron-Molecule Collisions, Ed. by L. C. Pitchford, B. V. McCoy, A. Chutjian, and S. Tajmar (Springer-Verlag, New York, 1987), p. 167.

    Google Scholar 

  46. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  47. K. Tachibana, Phys. Rev. A 34, 1007 (1989).

    Article  ADS  Google Scholar 

  48. P. C. Cosby, J. Chem. Phys. 98, 9544 (1993).

    Article  ADS  Google Scholar 

  49. A. A. Konnov, Proc. Combust. Inst. (Pittsburg) 28, 317 (2000).

    Google Scholar 

  50. http://www.me.berkeley.edu/gri-mech.

  51. B. Eliasson and U. Kogelschatz, J. Chem. Phys. 83, 279 (1986).

    Google Scholar 

  52. N. L. Aleksandrov and A. M. Konchakov, Pis’ma Zh. Tekh. Fiz. 16(6), 4 (1990) [Tech. Phys. Lett. 16, 164 (1990)].

    Google Scholar 

  53. E. I. Mintoussov, S. V. Pancheshnyi, and A. Yu. Starikovskii, in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004, Paper AIAA-2004-1013.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.L. Aleksandrov, S.V. Kindysheva, E.N. Kukaev, S.M. Starikovskaya, A.Yu. Starikovskii, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 10, pp. 941–956.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, N.L., Kindysheva, S.V., Kukaev, E.N. et al. Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge. Plasma Phys. Rep. 35, 867–882 (2009). https://doi.org/10.1134/S1063780X09100109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09100109

PACS numbers

Navigation