Skip to main content
Log in

Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma

  • Magnetic Traps
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The DOL nonstationary model intended to describe plasma processes in axisymmetric magnetic mirror traps is considered. The model uses averaging over the bounce period in order to take into account the dependence of plasma parameters on the coordinate along the facility axis. Examples of calculations of trap parameters by means of the DOL code based on this model are presented. Among the features of the DOL model, one can single out two points: first, the capability of calculating the terms of the collision integral with the use of a non-Maxwellian scattering function while evaluating the distribution function of fast ions and, second, concerning the background plasma, the capability of calculating the longitudinal particle and energy fluxes in confinement modes with the particle mean free path being on the order of the trap length. The influence of the scattering function approximation used to calculate the collision integral on the solution to the kinetic equation is analyzed. The dependences of plasma parameters on the power of heating injectors and the length of the fast-ion turning zone are presented as calculation examples. The longitudinal profile of the fusion reaction rate in the case of a trap with a long fast-ion turning zone is shown to depend strongly on the input parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Killeen, G. D. Kerbel, M. G. McCoy, and A. A.Mirin, Computational Methods for Kinetic Models of Magnetically Confined Plasmas (Springer-Verlag, New York, 1986).

    Book  Google Scholar 

  2. Y. Matsuda and J. J. Stewart, J. Comput. Phys. 66, 197 (1986).

    Article  ADS  Google Scholar 

  3. K. Noack, A. Rogov, A. V. Anikeev, A. A. Ivanov, E. P. Kruglyakov, and Y. A. Tsidulko, Ann. Nucl. Energy 35, 1216 (2008).

    Article  Google Scholar 

  4. D. V. Yurov, A. V. Anikeev, P. A. Bagryansky, S. A. Brednikhin, S. A. Frolov, S. I. Lezhnin, and V. V. Prikhodko, Fusion Eng. Des. 87, 1684 (2012).

    Article  Google Scholar 

  5. A. Y. Chirkov, S. V. Ryzhkov, P. A. Bagryansky, and A. V. Anikeev, Plasma Phys. Rep. 38, 1025 (2012).

    Article  ADS  Google Scholar 

  6. A. V. Anikeev, V. V. Prikhodko, and D. V. Yurov, Fusion Sci. Technol. 68, 70 (2015).

    Article  Google Scholar 

  7. P. A. Bagryansky, A. V. Anikeev, A. D. Beklemishev, A. S. Donin, A. A. Ivanov, M. S. Korzhavina, Y. V. Kovalenko, E. P. Kruglyakov, A. A. Lizunov, V. V. Maximov, S. V. Murakhtin, V. V. Prikhodko, E. I. Pinzhenin, A. N. Pushkareva, V. Y. Savkin, et al., Fusion Sci. Technol. 59, 31 (2011).

    Google Scholar 

  8. P. A. Bagryansky, A. G. Shalashov, E. D. Gospodchikov, A. A. Lizunov, V. V. Maximov, V. V. Prikhodko, E. I. Soldatkina, A. L. Solomakhin, and D. V. Yakovlev, Phys. Rev. Lett. 114, 205001 (2015).

    Article  ADS  Google Scholar 

  9. I. A. Kotel’nikov, D. D. Ryutov, Yu. A. Tsidulko, V. V. Katyshev, A. V. Komin, and V. M. Krivosheev, Preprint No. 90-105 (Inst. of Nuclear Physics, Siberian Branch, USSR Acad. Sci., Novosibirsk).

  10. R. K. Janev and J. J. Smith, Nucl. Fusion Suppl. 4 (IAEA-APID-4) (1993).

  11. V. V. Mirnov and D. D. Ryutov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 1 (5), 57 (1980).

    Google Scholar 

  12. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 93.

    ADS  Google Scholar 

  13. T. D. Rognlien and T. A. Cutler, Nucl. Fusion 20, 1003 (1980).

    Article  ADS  Google Scholar 

  14. V. P. Pastukhov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1987), Vol. 13, p. 203.

    Google Scholar 

  15. D. I. Skovorodin and A. D. Beklemishev, Fusion Sci. Technol. 59, 199 (2011).

    Google Scholar 

  16. G. H. Miley, H. Towner, and N. Ivich, Report No. COO-2218-17 (Univ. of Illinois, Chicago, IL, 1974).

    Google Scholar 

  17. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, NJ, 1977).

    MATH  Google Scholar 

  18. D. V. Yurov, S. A. Brednikhin, S. A. Frolov, S. I. Lezhnin, V. V. Prikhodko, and Y. A. Tsidulko, Fusion Sci. Technol. 63, 313 (2013).

    Google Scholar 

  19. A. V. Anikeev, P. A. Bagryansky, K. V. Zaitsev, O. A. Korobeinikova, S. V. Murakhtin, D. I. Skovorodin, and D. V. Yurov, Plasma Phys. Rep. 41, 773 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Yurov.

Additional information

Original Russian Text © D.V. Yurov, V.V. Prikhodko, Yu.A. Tsidulko, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 3, pp. 217–233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurov, D.V., Prikhodko, V.V. & Tsidulko, Y.A. Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma. Plasma Phys. Rep. 42, 210–225 (2016). https://doi.org/10.1134/S1063780X16030090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16030090

Keywords

Navigation