Skip to main content
Log in

3D Burgers Equation in Relativistic Plasma in the Presence of Electron and Negative Ion Trapping: Evolution of Shock Wave

  • Nonideal Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The characteristics of shock waves in a relativistic plasma in the presence of nonisothermal electrons and nonisothermal negative ions is investigated by deriving the evolution equation in terms of a modified 3D Burgers equation, or trapped 3D Burgers equation. The solution of this equation is examined analytically to study the salient characteristics of shock waves in such plasma. The nonlinear coefficient is found to have the lowest (highest) value when the negative ions move toward thermal equilibrium with a dip-shaped electron distribution (when both electrons and negative ions follow a dip-shaped distribution) for a particular value of relativistic factor, and it remains in an intermediate state when both electrons and negative ions follow a flat-topped distribution. On the other hand, the dissipative coefficient is found to decrease (increase) with increasing relativistic parameter (viscous parameter). A profound effect of the trapped state of both electrons and negative ions and the temperature ratio between positive ions and electrons (negative ions and electrons) on the structure of the shock wave is also seen. However, it has been noticed that the trapped parameter of electrons has a dominating control over the shock potential profile than the trapped parameter of negative ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey, Phys. Rev. Lett. 86, 1011 (2001).

    Article  ADS  Google Scholar 

  2. P. Guio, S. Børve, L. K. S. Daldorff, J. P. Lynov, P. Michelsen, H. L. Pécseli, J. J. Rasmussen, K. Saeki, and J. Trulsen, Nonlin. Process. Geophys. 10, 75 (2003).

    Article  ADS  Google Scholar 

  3. J. Egedal, W. Fox, M. Porkolab, and A. Fasoli, Phys. Plasmas 11, 2844 (2004).

    Article  ADS  Google Scholar 

  4. G. Bettega, F. Cavaliere, M. Cavenago, A. Illiberi, R. Pozzoli, and M. Romé, Plasma Phys. Controlled Fusion 47, 1697 (2005).

    Article  ADS  Google Scholar 

  5. Y. Y. Sprit, S. Dmitriy, D. Alexander, E. U. Maria, K. Adam, O. Ksenia, N. B. Daniel, L. T. Drew, and K. Kim, Nature Phys. 9, 699 (2013).

    Article  ADS  Google Scholar 

  6. D. N. Baker, A. N. Jaynes, V. C. Hoxie, R. M. Thorne, J. C. Foster, X. Li, J. F. Fennell, J. R. Wygant, S. G. Kanekal, P. J. Erickson, W. Kurth, W. Li, Q. Ma, Q. Schiller, L. Blum, et al., Nature 515, 531 (2014).

    Article  ADS  Google Scholar 

  7. A. N. Dev, M. K. Deka, J. Sarma, D. Saikia, and N. C. Adhikary, Chin. Phys. B 25, 105202 (2016).

    Article  ADS  Google Scholar 

  8. A. N. Dev, J. Sarma, M. K. Deka, and N. C. Adhikary, Plasma Sci. Technol. 17, 268 (2015).

    Article  Google Scholar 

  9. A. N. Dev, J. Sarma, and M. K. Deka, Can. J. Phys. 93, 1030 (2015).

    Article  ADS  Google Scholar 

  10. M. K. Deka, Braz. J. Phys. 46, 672 (2016).

    Article  ADS  Google Scholar 

  11. A. N. Dev, Chin. Phys. B 26, 025203 (2017).

    Article  ADS  Google Scholar 

  12. A. N. Dev and M. K. Deka, Braz J. Phys. 47, 532 (2017).

    Article  ADS  Google Scholar 

  13. H. Schamel, Phys. Scr. 20, 306 (1979).

    Article  ADS  Google Scholar 

  14. R. A. Cairns, A. A. Mamun, R. Bingham, and P. K. Shukla, Phys. Scr. T63, 80 (1996).

    Google Scholar 

  15. H. Alinejad, Astrophys. Space Sci. 334, 325 (2011).

    Article  ADS  Google Scholar 

  16. H. Alinejad, Astrophys. Space Sci. 337, 637 (2012).

    Article  ADS  Google Scholar 

  17. W. Masood, I. M. Shaukat, and A. M. Mirza, Astrophys. Space Sci. 352, 621 (2014).

    Article  ADS  Google Scholar 

  18. J. I. Vette, in Particles and Fields in the Magnetosphere, Ed. by B. M. McCormac (Reidel, Dordrecht, 1970), p. 305.

  19. E. Heidari, M. Aslaninejad, and H. Eshraghi, Plasma Phys. Controlled Fusion 52, 075010 (2010).

    Article  ADS  Google Scholar 

  20. G. Crockett, J. Geophys. Res. 94, 17299 (1989).

    Article  Google Scholar 

  21. S. K. El-Labany, J. Plasma Phys. 50, 495 (1993).

    Article  ADS  Google Scholar 

  22. R. E. Ergun, C. W. Carlson, J. P. McFadden, E. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Ternerin, I. Roth, L. Muschietti, R. Elphic, R. Strangeway, P. R. Pfaf, C. A. Cattell, D. Klumpar, et al., Geophys. Res. Lett. 25, 2041 (1998).

    Article  ADS  Google Scholar 

  23. J. R. Franz, P. M. Kintner, J. S. Pickett, and L. J. Chen, J. Geophys. Res. 110, A09212 (2005).

    Google Scholar 

  24. W. S. Duan, Y. R. Shi, and X. R. Hong, Phys. Lett. A 323, 89 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  25. W. S. Duan, Chin. Phys. 13, 598 (2004).

    Article  ADS  Google Scholar 

  26. W. S. Duan, Commun. Theor. Phys. 38, 660 (2002).

    Article  ADS  Google Scholar 

  27. S. Ali Shan, A.-U. Rehman, and A. Mushtaq, Phys. Plasmas 24, 032104 (2017).

    Article  ADS  Google Scholar 

  28. S. Ali Shan, A.-U. Rehman, and A. Mushtaq, Phys. Plasmas 23, 092118 (2016).

    Article  ADS  Google Scholar 

  29. S. Guo, L. Mei, Y.-L. He, H. Guo, and Y. Zhao, Europhys. Lett. 114, 25002 (2016).

    Article  ADS  Google Scholar 

  30. M. G. Hafez, N. C. Roy, M. R. Talukder, and A. M. Hossain, Phys. Plasmas 23, 082904 (2016).

    Article  ADS  Google Scholar 

  31. N. Ahmadihojatabad, H. Abbasi, and H. P. Hakimi, Phys. Plasmas 17, 112305 (2010).

    Article  ADS  Google Scholar 

  32. H. Alinejad, Phys. Lett. A 373, 3663 (2009).

    Article  ADS  Google Scholar 

  33. H. Abbasi and H. P. Hakimi, Phys. Plasmas 14, 012307 (2007).

    Article  ADS  Google Scholar 

  34. H. Alinejad, S. Sobhanian, and J. Mahmoodi, Phys. Plasmas 13, 012304 (2006).

    Article  ADS  Google Scholar 

  35. H. R. Pakzad, Astrophys. Space Sci. 326, 77 (2010).

    Article  ADS  Google Scholar 

  36. Y. Nejoh, IEEE Trans. Plasma Sci. 20, 80 (1992).

    Article  ADS  Google Scholar 

  37. W. Masood, N. Hamid, I. Ilyas, and M. Siddiq, Phys. Plasmas 24, 062308 (2017).

    Article  ADS  Google Scholar 

  38. H. Kokura, S. Yoneda, K. Nakamura, N. Mitsuhira, M. Nakamura, and H. Sugai, Jpn. J. Appl. Phys. 38, 5256 (1999).

    Article  ADS  Google Scholar 

  39. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005).

    Book  Google Scholar 

  40. H. Amemiya, Jpn. J. Appl. Phys. 30, 2601 (1991).

    Article  ADS  Google Scholar 

  41. M. Rapp, J. Hedin, I. Strelnikova, M. Friedrich, J. Gumbel, and F.-J. Lübken, Geophys. Res. Lett. 32, L23821 (2005)

    Google Scholar 

  42. O. Rahmanand and M. M. Haider, Adv. Astrophys. 1, 161 (2016).

    Google Scholar 

  43. A. A. Mamun, Phys. Lett. A 372, 4610 (2008).

    Article  ADS  Google Scholar 

  44. N. Roy, S. S. Duha, and A. A. Mamun, J. Plasma Phys. 79, 233 (2013).

    Article  ADS  Google Scholar 

  45. H. Schamel, Plasma Phys. 14, 905 (1972).

    Article  ADS  Google Scholar 

  46. H. Schamel, J. Plasma Phys. 9, 377 (1973).

    Article  ADS  Google Scholar 

  47. H. Schamel, J. Plasma Phys. 13, 139 (1975).

    Article  ADS  Google Scholar 

  48. O. Rahman, Mod. Phys. Lett. A 30, 1550216 (2015).

    Article  ADS  Google Scholar 

  49. N. Roy, S. S. Duha, and A. A. Mamun, J. Plasma Phys. 79, 233 (2013).

    Article  ADS  Google Scholar 

  50. O. Rahman, A. A. Mamun, and K. S. Ashrafi, Astrophys. Space Sci. 335, 425 (2011).

    Article  ADS  Google Scholar 

  51. I. Tasnim, M. M. Masud, and A. A. Mamun, Astrophys. Space Sci. 343, 647 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kr. Deka.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, M.K., Dev, A.N. 3D Burgers Equation in Relativistic Plasma in the Presence of Electron and Negative Ion Trapping: Evolution of Shock Wave. Plasma Phys. Rep. 44, 965–975 (2018). https://doi.org/10.1134/S1063780X18100021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18100021

Navigation