Skip to main content
Log in

Diagnostics Complex of the First Wall and Divertor of Tokamak with Reactor Technologies: Control of Erosion and Temperature and Monitoring of Fusion Fuel Build-up

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A project is proposed of the complex of diagnostics of the plasma-facing elements of the first wall and divertor of tokamak with reactor technologies (TRT). The main objectives of the complex are control of the integrity of plasma-facing elements, monitoring of the state of the first wall and the thermal flows onto the first wall and divertor targets as well as studies of the physical processes in the material of the first wall during its interaction with plasma. A review of expected effects of interaction of plasma with the plasma-facing elements is given; in the first place, with the tungsten facing of the divertor. Based on the analysis of the methods that were tested at existing tokamaks and methods that are being developed within the framework of the international ITER project, a complex of complementary diagnostics is proposed, which satisfies the TRT tasks. In the paper, a variant of implementation at TRT is discussed of frequency/amplitude modulated laser radar, two-wavelength digital holography, active (laser) and passive IR thermography, diagnostics of fuel build-up based on laser desorption and ablation, and the placement of witness samples. A variant is proposed of the placement of these diagnostics at TRT and their physical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. De Temmerman, T. Hirai, and R. A. Pitts, Plasma Phys. Control. Fusion 60, 044018 (2018). https://doi.org/10.1088/1361-6587/aaaf62

  2. B. Schweer, A. Huber, G. Sergienko, V. Philipps, F. Irrek, H. G. Esser, U. Samm, M. Kempenaars, M. Stamp, C. Gowers, and D. Richards, J. Nucl. Mater. 337−339, 570 (2005). https://doi.org/10.1016/j.jnucmat.2004.10.156

  3. V. Philipps, A. Malaquias, A. Hakola, J. Karhunen, G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, E. Fortuna, P. Gasior, M. Kubkowska, A. Czarnecka, M. Laan, A. Lissovski, P. Paris, et al., Nucl. Fusion 53, 093002 (2013). https://doi.org/10.1088/0029-5515/53/9/093002

  4. P. Liu, D. Wu, L. Y. Sun, D. Y. Zhao, R. Hai, C. Li, H. Ding, Z. H. Hu, L. Wang, J. S. Hu, J. L. Chen, G. N. Luo, and EAST Team, Fusion Eng. Des. 118, 98 (2017). https://doi.org/10.1016/j.fusengdes.2017.03.021

    Article  Google Scholar 

  5. J. Karhunen, A. Hakola, J. Likonen, A. Lissovski, M. Laan, P. Paris, and JET-EFDA Contributors, J. Nucl. Mater. 463, 931 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.028

    Article  ADS  Google Scholar 

  6. A. Loarte, ITER technical report ITR-20-008 (ITER Organization, Cadarache, 2020). https://www.iter.org/doc/www/content/com/Lists/ITER%20Technical%20Reports/Attachments/14/ITR_20_008_Required_RD_in_existing_fusion_facilities_to_support_the_ITER_Research_Plan.pdf

    Google Scholar 

  7. G. Pintsuk, I. Bobin-Vastra, S. Constans, P. Gavila, M. Rödig, and B. Riccardi, Fusion Eng. Des. 88, 1858 (2013). https://doi.org/10.1016/j.fusengdes.2013.05.091

    Article  Google Scholar 

  8. A. S. Kukushkin and A. A. Pshenov, Plasma Phys. Rep. 47, 1238 (2021).

    Article  ADS  Google Scholar 

  9. R. A. Pitts, X. Bonnin, F. Escourbiac, H. Frerichs, J. P. Gunn, T. Hirai, A. S. Kukushkin, E. Kaveeva, M. A. Miller, D. Moulton, V. Rozhansky, I. Senichenkov, E. Sytova, O. Schmitz, P. C. Stangeby, et al., Nucl. Mater. Energy 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696

  10. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Belchenko, et al., Plasma Phys. Rep. 47, 1092 (2021). https://doi.org/10.1134/S1063780X21110192

    Article  ADS  Google Scholar 

  11. S. Yu. Medvedev, A. A. Martynov, Yu. Yu. Poshekhonov, S. V. Konovalov, V. M. Leonov, V. E. Lukash, and R. R. Khairutdinov, Plasma Phys. Rep. 47, 1119 (2021). https://doi.org/10.1134/S1063780X21110222

    Article  ADS  Google Scholar 

  12. T. Loewenhoff, J. Linke, G. Pintsuk, and C. Thomser, Fusion Eng. Des. 87, 1201 (2012). https://doi.org/10.1016/j.fusengdes.2012.02.106

    Article  Google Scholar 

  13. C. V. Thomser, S. Bailescu, J. W. Brezinsek, H. Coenen, T. Greuner, J. Hirai, C. P. Linke, H. Lungu, G. Maier, Ph. Matthews, R. Mertens, V. Neu, V. Philipps, M. Riccardo, C. Rubel, et al., Fusion Sci. Technol. 62, 1 (2012). https://doi.org/10.13182/FST12-A14103

    Article  ADS  Google Scholar 

  14. J. W. Coenen, K. Krieger, B. Lipschultz, R. Dux, A. Kallenbach, T. Lunt, H. W. Mueller, S. Potzel, R. Neu, A. Terra, and the ASDEX Upgrade and TE-XTOR Teams, Report PSFC/JA-12-72 (Plasma Science and Fusion Center of Massachusetts Institute of Technology, Cambridge, MA, 2013). https://library.psfc.mit.edu/catalog/reports/2010/12ja/12ja072/12ja072_full.pdf.

  15. I. V. Mazul, R. N. Giniyatulin, A. A. Kavin, N. V. Litunovskii, A. N. Makhankov, P. Yu. Piskarev, and V. N. Tanchuk, Plasma Phys. Rep. 47, 1220 (2021).

    Article  ADS  Google Scholar 

  16. V. Kh. Alimov, W. M. Shu, J. Roth, K. Sugiyama, S. Lindig, M. Balden, K. Isobe, and T. Yamanishi, Phys. Scr. 2009, 014048 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014048

  17. S. Kajita, W. Sakaguchi, N. Ohno, N. Yoshida, and T. Saeki, Nucl. Fusion 49, 095005 (2009). https://doi.org/10.1088/0029-5515/49/9/095005

  18. V. P. Budaev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (4), 5 2015. T. 38. № 4.

  19. M. J. Baldwin, R. P. Doerner, D. Nishijima, D. Buchenauer, W. M. Clift, R. A. Causey, and K. Schmid, J. Nucl. Mater. 363−365, 1179 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.151

  20. S. Cui, M. Simmonds, W. Qin, F. Ren, G. R. Tynan, R. P. Doerner, and R. Chen, J. Nucl. Mater. 486, 267 (2017). https://doi.org/10.1016/j.jnucmat.2017.01.023

    Article  ADS  Google Scholar 

  21. C. S. Corr, S. O’Ryan, C. Tanner, M. Thompson, J. E. Bradby, G. De Temmerman, R. G. Elliman, P. Kluth, and D. Riley, Nucl. Mater. Energy 12, 1336 (2016). https://doi.org/10.1016/j.nme.2017.04.012

    Article  Google Scholar 

  22. Y. Ueda, J. W. Coenen, G. De Temmerman, R. P. Doerner, J. Linke, V. Philipps, and E. Tsitrone, Fusion Eng. Des. 89, 901 (2014). https://doi.org/10.1016/j.fusengdes.2014.02.078

    Article  Google Scholar 

  23. M. Sakamoto, M. Yuno, S. Itoh, K. Hanada, K. Nakamura, H. Zushi, E. Jotaki, M. Hasegawa, S. V. Kulkarni, A. Iyomasa, S. Kawasaki, and H. Nakashima, Nucl. Fusion 44, 693 (2004). https://doi.org/10.1088/0029-5515/44/7/001

    Article  ADS  Google Scholar 

  24. B. Lipschultz, J. W. Coenen, H. S. Barnard, N. T. Howard, M. L. Reinke, D. G. Whyte, and G. M. Wright, Nucl. Fusion 52, 123002 (2012). https://doi.org/10.1088/0029-5515/52/12/123002

  25. V. A. Vershkov, D. K. Vukolov, E. O. Kuleshin, and A. A. Medvedev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 35 (4), 80 (2012).

    Google Scholar 

  26. K. Heinola, A. Widdowson, J. Likonen, E. Alves, A. Baron-Wiechec, N. Barradas, S. Brezinsek, N. Catarino, P. Coad, S. Koivuranta, S. Krat, G. F. Matthews, M. Mayer, P. Petersson, and JET Contributors, Phys. Scr. 2016, 014075 (2016). https://doi.org/10.1088/0031-8949/T167/1/014075

  27. Y. Romazanov, S. Brezinsek, A. Kirschner, D. Borodin, A. Eksaeva, R. A. Pitts, S. W. Lisgo, H. Anand, E. Veshchev, V. S. Neverov, A. B. Kukushkin, A. G. Alekseev, and C. Linsmeier, Contrib. Plasma Phys. 60, e201900149 (2019). https://doi.org/10.1002/ctpp.201900149

  28. V. Kh. Alimov, M. Yajima, S. Masuzaki, M. Tokitani, and LHD Experiment Group, Fusion Eng. Des. 147, 111228 (2019). https://doi.org/10.1016/j.fusengdes.2019.06.001

  29. S. A. Krat, Yu. M. Gasparyan, A. S. Popkov, and A. A. Pisarev, Vacuum 105, 111 (2014). https://doi.org/10.1016/j.vacuum.2014.01.006

    Article  ADS  Google Scholar 

  30. T. Eich, A. W. Leonard, R. A. Pitts, W. Fundamenski, R. J. Goldston, T. K. Gray, A. Herrmann, A. Kirk, A. Kallenbach, O. Kardaun, A. S. Kukushkin, B. LaBombard, R. Maingi, M. A. Makowski, A. Scarabosio, et al., Nucl. Fusion 53, 093031 (2013). https://doi.org/10.1088/0029-5515/53/9/093031

  31. M. Houry, C. Pocheau, M.-H. Aumeunier, C. Balorin, K. Blanckaert, Y. Corre, X. Courtois, F. Ferlay, J. Gaspar, S. Gazzotti, A. Grosjean, Th. Loarer, H. Roche, A. Saille, S. Vives, et al., Fusion Eng. Des. 146, 1104 (2019). https://doi.org/10.1016/j.fusengdes.2019.02.017

    Article  Google Scholar 

  32. E. M. Hollmann, N. Commaux, N. W. Eidietis, C. J. Lasnier, D. L. Rudakov, D. Shiraki, C. Cooper, J. R. Martin-Solis, P. B. Parks, and C. Paz-Soldan, Phys. Plasmas 24, 062505 (2017). https://doi.org/10.1063/1.4985086

  33. X. Courtois, M. H. Aumeunier, C. Balorin, J. B. Migozzi, M. Houry, K. Blanckaert, Y. Moudden, C. Pocheau, A. Saille, E. Hugot, M. Marcos, S. Vives, and WEST Team, Fusion Eng. Des. 146, 2015 (2019). https://doi.org/10.1016/j.fusengdes.2019.03.090

    Article  Google Scholar 

  34. M. W. Chen, X. Z. Gong, K. F. Gan, L. Wang, Q. P. Yuan, K. Wu, K. D. Li, Y. M. Duan, L. Y. Meng, B. Zhang, S. B. Shu, J. Y. Zhang, C. Liu, R. R. Liang, C. J. Li, et al., Nucl. Fusion 60, 076009 (2020). https://doi.org/10.1088/1741-4326/ab8c65

  35. D. Guilhem, J. L. Bondil, B. Bertrand, C. Desgranges, M. Lipa, P. Messina, M. Missirlian, C. Portafaix, R. Reichle, H. Roche, and A. Saille, Fusion Eng. Des. 74, 879 (2005). https://doi.org/10.1016/j.fusengdes.2005.08.021

    Article  Google Scholar 

  36. ASE Optics Document No. F4E_D_2B7C62-TO08 D18.

  37. M. M. Menon, R. E. Barry, C. H. Skinner, and C. Gentile, in 18th IEEE/NPSS Symposium on Fusion Engineering. Symposium Proceedings (Cat. No. 99CH37050) (IEEE Press, New York, 1999), p. 261. https://doi.org/10.1109/FUSION.1999.849833

  38. ITER document ITER_D_2K3K7Y, v1.0−57−IVVS− “Design Description Document (DDD) for the IVVS Measurement System (MS).”

  39. C. H. Skinner, C. A. Gentile, M. M. Menon, and R. E. Barry, Nucl. Fusion 39, 1081 (1999). https://doi.org/10.1088/0029-5515/39/9/301

    Article  ADS  Google Scholar 

  40. U. Schnars and W. Jüptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  41. G. Pedrini, A. Calabuig, G. Jagannathan, M. Kempenaars, G. Vayakis, and W. Osten, Appl. Opt. 58, A147 (2019). https://doi.org/10.1364/AO.58.00A147

    Article  ADS  Google Scholar 

  42. T. Eich, B. Sieglin, A. Scarabosio, W. Fundamenski, R. J. Goldston, and A. Herrmann (ASDEX Upgrade Team), Phys. Rev. Lett. 107, 215001 (2011). https://doi.org/10.1103/PhysRevLett.107.215001

  43. R. Reichle, P. Andrew, G. Counsell, J.-M. Drevon, A. Encheva, G. Janeschitz, D. Johnson, Y. Kusama, B. Levesy, A. Martin, C. S. Pitcher, R. Pitts, D. Thomas, G. Vayakis, and M. Walsh, Rev. Sci. Instrum. 81, 10E135 (2010). https://doi.org/10.1063/1.3491199

  44. X. Courtois, C. Sortais, D. Melyukov, J. L. Gardarein, A. Semerok, and Ch. Grisolia, Fusion Eng. Des. 86, 1714 (2011). https://doi.org/10.1016/j.fusengdes.2011.04.071

    Article  Google Scholar 

  45. Y. Gasparyan, D. Bulgadaryan, N. Efimov, V. Efimov, S. Krat, M. Popova, D. Sinelnikov, E. Vovchenko, A. Dmitriev, D. Elets, E. Mukhin, A. Razdobarin, V. Minaev, A. Novokhatsky, N. Sakharov, et al., Fusion Eng. Des. 172, 112882 (2021). https://doi.org/10.1016/j.fusengdes.2021.112882

  46. B. Schweer, G. Beyene, S. Brezinsek, N. Gierse, A. Huber, F. Irrek, V. Kotov, V. Philipps, U. Samm, and M. Zlobinski, Phys. Scr. 2009, 014008 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014008

  47. G. Maddaluno, S. Almaviva, L. Caneve, F. Colao, V. Lazic, L. Laguardia, P. Gasior, M. Kubkowska, and FTU team, Nucl. Mater. Energy 18, 208 (2019). https://doi.org/10.1016/j.nme.2018.12.029

    Article  Google Scholar 

  48. H. Wu, C. Li, D. Wu, J. Liu, Z. He, Q. Li, S. Yuan, X. Cui, R. Hai, and H. Ding, J. Anal. At. Spectrom. 36, 2074 (2021). https://doi.org/10.1039/D1JA00196E

    Article  Google Scholar 

  49. S. M. Zaytsev, A. M. Popov, and T. A. Labutin, Spectrochim. Acta, Part B 158, 105632 (2019). https://doi.org/10.1016/j.sab.2019.06.002

  50. P. Paris, K. Piip, A. Hakola, M. Laan, M. Aints, S. Koivuranta, J. Likonen, A. Lissovski, M. Mayer, R. Neu, V. Rohde, K. Sugiyama, and ASDEX Upgrade Team, Fusion Eng. Des. 98−99, 1349 (2015). https://doi.org/10.1016/j.fusengdes.2015.03.004

  51. S. Almaviva, L. Caneve, F. Colao, and G. Maddaluno, Fusion Eng. Des. 146, 2087 (2019). https://doi.org/10.1016/j.fusengdes.2019.03.109

    Article  Google Scholar 

  52. E. D. Marenkov, I. P. Tsygvintsev, Y. M. Gasparyan, and A. A. Stepanenko, Nucl. Mater. Energy 28, 101029 (2021). https://doi.org/10.1016/j.nme.2021.101029

  53. M. Rubel, J. P. Coad, A. Widdowson, G. F. Matthews, H. G. Esser, T. Hirai, J. Likonen, J. Linke, C. P. Lungu, M. Mayer, L. Pedrick, C. Ruset, and JET-EFDA Contributors, J. Nucl. Mater. 438, S1204 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.266

    Article  Google Scholar 

  54. A. Hakola, S. Koivuranta, J. Likonen, A. Herrmann, H. Maier, M. Mayer, R. Neu, V. Rohde, and ASDEX Upgrade Team, J. Nucl. Mater. 463, 162 (2015). https://doi.org/10.1016/j.jnucmat.2014.11.034

    Article  ADS  Google Scholar 

  55. A. Lagoyannis, P. Tsavalas, K. Mergia, G. Provatas, K. Triantou, E. Tsompopoulou, M. Rubel, P. Petersson, A. Widdowson, S. Harissopulos, T. J. Mertzimekis, and the JET Contributors, Nucl. Fusion 57, 076027 (2017). https://doi.org/10.1088/1741-4326/aa6ec1

  56. J. Likonen, K. Heinola, A. De Backer, A. Baron-Wiechec, N. Catarino, I. Jepu, C. F. Ayres, P. Coad, S. Koivuranta, S. Krat, G. F. Matthews, M. Mayer, A. Widdowson, and JET Contributors, Nucl. Mater. Energy 19, 166 (2019). https://doi.org/10.1016/j.nme.2019.02.031

    Article  Google Scholar 

  57. S. Krat, M. Mayer, J. P. Coad, C. P. Lungu, K. Heinola, A. Baron-Wiechec, I. Jepu, A. Widdowson, and JET Contributors, Nucl. Mater. Energy 29, 101072 (2021). https://doi.org/10.1016/j.nme.2021.101072

  58. S. Krat, M. Mayer, I. Bykov, C. P. Lungu, G. de Saint Aubin, A. Widdowson, I. S. Carvalho, and JET contributors, Nucl. Mater. Energy 11, 20 (2017). https://doi.org/10.1016/j.nme.2017.02.026

    Article  Google Scholar 

  59. M. Mayer, S. Krat, J. P. Coad, A. Hakola, J. Likonen, S. Lindig, A. Widdowson, and JET-EFDA Contributors, J. Nucl. Mater. 438, S780 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.167

    Article  Google Scholar 

  60. S. Krat, M. Mayer, U. von Toussaint, P. Coad, A. Widdowson, Y. Gasparyan, A. Pisarev, and JET Contributors, Nucl. Mater. Energy 12, 548 (2017). https://doi.org/10.1016/j.nme.2016.12.005

    Article  Google Scholar 

  61. J. P. Coad, D. E. Hole, M. Rubel, A. Widdowson, and J. Vince, Phys. Scr. 2009, 014023 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014023

  62. T. Ushiki, R. Imazawa, H. Murakami, K. Shimizu, T. Sugie, and T. Hatae, Fusion Eng. Des. 168, 112665 (2021). https://doi.org/10.1016/j.fusengdes.2021.112665

  63. V. S. Lisitsa, E. E. Mukhin, M. B. Kadomtsev, A. B. Kukushkin, A. S. Kukushkin, G. S. Kurskiev, M. G. Levashova, and S. Yu. Tolstyakov, Plasma Phys. Rep. 38, 138 (2012).

    Article  ADS  Google Scholar 

  64. V. M. Leonov, S. V. Konovalov, V. E. Zhogolev, A. A. Kavin, A. V. Krasilnikov, A. Yu. Kuyanov, V. E. Lukash, A. B. Mineev, and R. R. Khayrutdinov, Plasma Phys. Rep. 47, 1107 (2021). https://doi.org/10.1134/S1063780X21120047

    Article  ADS  Google Scholar 

  65. E. E. Mukhin, P. Andrew, A. D. Anthoine, A. N. Bazhenov, R. Barnsley, I. M. Bukreev, V. L. Bukhovets, A. P. Chernakov, A. E. Gorodetsky, M. M. Kochergin, A. N. Koval, A. B. Kukushkin, A. S. Kukushkin, G. S. Kurskiev, M. G. Levashova, et al., Nucl. Fusion 56, 036017 (2016). https://doi.org/10.1088/0029-5515/56/3/036017

  66. E. E. Mukhin, S. Yu. Tolstyakov, G. S. Kurskiev, N. S. Zhil’tsov, A. N. Koval, V. A. Solovei, A. V. Gorbunov, A. V. Gorshkov, G. M. Asadulin, A. F. Kornev, A. M. Makarov, D. L. Bogachev, N. A. Babinov, D. S. Samsonov, A. G. Razdobarin, et al., Plasma Phys. Rep. 48, 866 (2022).

  67. L. Moser, L. Marot, R. Steiner, M. Newman, A. Widdowson, D. Ivanova, J. Likonen, P. Petersson, G. Pintsuk, M. Rubel, E. Meyer, and JET Contributors, Phys. Scr. 2016, 014069 (2016). https://doi.org/10.1088/0031-8949/T167/1/014069

  68. A. G. Razdobarin, A. M. Dmitriev, A. N. Bazhenov, I. M. Bukreev, M. M. Kochergin, A. N. Koval, G. S. Kurskiev, A. E. Litvinov, S. V. Masyukevich, E. E. Mukhin, D. S. Samsonov, V. V. Semenov, S. Yu. Tolstyakov, P. Andrew, V. L. Bukhovets, et al., Nucl. Fusion 55, 093022 (2015). https://doi.org/10.1088/0029-5515/55/9/093022

Download references

Funding

The formulation of the problems for the development of the diagnostics complex of the first wall of TRT (Section 2) was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (contract no. 0723-2020-0043). The choice and justification of physical methods were also done with the support of the Ministry of Science and Higher Education of the Russian Federation (contract no. 0034-2019-0001). The development of variants of implementation of the diagnostics complex at the tokamak and the analysis of the expected measurement accuracy (Section 4) were supported by the Russian Science Foundation (project no. 22-12-00360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Razdobarin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razdobarin, A.G., Gasparyan, Y.M., Bogachev, D.L. et al. Diagnostics Complex of the First Wall and Divertor of Tokamak with Reactor Technologies: Control of Erosion and Temperature and Monitoring of Fusion Fuel Build-up. Plasma Phys. Rep. 48, 1389–1403 (2022). https://doi.org/10.1134/S1063780X22700283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22700283

Keywords:

Navigation