Skip to main content
Log in

Features of the persistent photoconductivity in InAs/AlSb heterostructures with double quantum wells and a tunneling-transparent barrier

  • XVI Symposium “nanophysics and Nanoelectronics”, Nizhni Novgorod, March 12–16, 2012
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The spectra of persistent photoconductivity for InAs/AlSb heterostructures with double quantum wells and a separation AlSb barrier with varying thickness between 0.6–1.8 nm are measured at T = 4.2 K. The electron concentrations in the wells at various illumination wavelengths are determined from the Fourier analysis of Shubnikov-de Haas oscillations. The features associated with the tunneling transparency of a separation barrier 0.6 nm thick (two monolayers) are revealed. The performed self-consistent calculations of the energy profile of a double quantum well showed that a symmetric profile is established in the structures in the region of negative residual photoconductivity, while the region of positive persistent photoconductivity has an asymmetric potential profile, which leads to Rashba spin splitting (>2 meV at the Fermi level). It is shown that the introduction of the tunneling-transparent separation barrier increases the Rashba splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Tuttle, H. Kroemer, and J. H. English, J. Appl. Phys. 65, 5239 (1989).

    Article  ADS  Google Scholar 

  2. Yu. G. Sadof’ev, A. Ramamoorthy, B. Naser, J. P. Bird, S. R. Jonson, and Y.-H. Zhang, Appl. Phys. Lett. 81, 1833 (2002).

    Article  ADS  Google Scholar 

  3. Ch. Gauer, J. Scriba, A. Wixforth, J. P. Kotthaus, C. Nguyen, G. Tuttle, J. H. English, and H. Kroemer, Semicond. Sci. Technol. 8, S137 (1993).

    Article  ADS  Google Scholar 

  4. F. C. Wang, W. E. Zhang, C. H. Yang, M. J. Yang, and B. R. Bennett, Appl. Phys. Lett. 69, 1417 (1996).

    Article  ADS  Google Scholar 

  5. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, Semiconductors 45, 110 (2011).

    Article  ADS  Google Scholar 

  6. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, J. Phys.: Condens. Matter 23, 385601 (2011).

    Article  ADS  Google Scholar 

  7. S. S. Krishtopenko, V. I. Gavrilenko, and M. Goiran, J. Phys.: Condens. Matter 24, 135601 (2012).

    Article  ADS  Google Scholar 

  8. V. I. Gavrilenko, A. V. Ikonnikov, S. S. Krishtopenko, A. A. Lastovkin, K. V. Marem’yanin, Yu. G. Sadof’ev, and K. E. Spirin, Semiconductors 44, 616 (2010).

    Article  Google Scholar 

  9. M. V. Yakunin, S. M. Podgornykh, and Yu. G. Sadofyev, J. Low Temp. Phys. 35, 44 (2009).

    Article  Google Scholar 

  10. M. V. Yakunin, A. de Visser, G. Galistu, S. M. Podgornykh, Yu. G. Sadofyev, N. G. Shelushinina, and G. I. Harus, J. Phys.: Conf. Ser. 150, 022100 (2009).

    Article  ADS  Google Scholar 

  11. V. Ya. Aleshkin, V. I. Gavrilenko, D. M. Gaponova, A. V. Ikonnikov, K. V. Marem’yanin, S. V. Morozov, Yu. G. Sadofyev, S. R. Johnson, and Y.-H. Zhang, Semiconductors 39, 22 (2005).

    Article  ADS  Google Scholar 

  12. S. S. Krishtopenko, A. V. Malyzhenkov, A. V. Ikonnikov, and V. I. Gavrilenko, in Proceedings of the 16th International Symposium on Nanophysics and Nanoelectronics (Nizh. Novgorod, 2012), Vol. 1, p. 286.

  13. V. Ya. Aleshkin, V. I. Gavrilenko, A. V. Ikonnikov, Yu. G. Sadofyev, J. P. Bird, S. R. Johnson, and Y.-H. Zhang, Semiconductors 39, 62 (2005).

    Article  ADS  Google Scholar 

  14. A. V. Ikonnikov, S. S. Krishtopenko, V. I. Gavrilenko, Yu. G. Sadofyev, Yu. B. Vasilyev, M. Orlita, and W. Knap, J. Low Temp. Phys. 159, 197 (2010).

    Article  ADS  Google Scholar 

  15. V. Ya. Aleshkin, V. I. Gavrilenko, A. V. Ikonnikov, S. S. Krishtopenko, Yu. G. Sadofyev, and K. E. Spirin, Semiconductors 42, 828 (2008).

    Article  ADS  Google Scholar 

  16. J. P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911 (1998).

    Article  ADS  Google Scholar 

  17. M. A. Leontiadou, K. L. Litvinenko, A. M. Gilbertson, C. R. Pidgeon, W. R. Branford, L. F. Cohen, M. Fearn, T. Ashley, M. T. Emeny, B. N. Murdin, and S. K. Clowes, J. Phys.: Condens. Matter 23, 035801 (2011).

    Article  ADS  Google Scholar 

  18. G. A. Khodaparast, R. E. Doezema, S. J. Chung, K. J. Goldammer, and M. B. Santos, Phys. Rev. B 70, 155322 (2004).

    Article  ADS  Google Scholar 

  19. Yu. B. Vasil’ev, F. Gouider, G. Nachtwei, and P. D. Buckle, Semiconductors 44, 1511 (2010).

    Article  ADS  Google Scholar 

  20. K. E. Spirin, A. V. Ikonnikov, A. A. Lastovkin, V. I. Gavrilenko, S. A. Dvoretskii, and N. N. Mikhailov, JETP Lett. 92, 63 (2010).

    Article  ADS  Google Scholar 

  21. A. V. Ikonnikov, A. A. Lastovkin, K. E. Spirin, M. S. Zholudev, V. V. Rumyantsev, K. V. Marem’yanin, A. V. Antonov, V. Ya. Aleshkin, V. I. Gavrilenko, S. A. Dvoretskii, N. N. Mikhailov, Yu. G. Sadofyev, and N. Samal, JETP Lett. 92, 756 (2010).

    Article  ADS  Google Scholar 

  22. A. V. Ikonnikov, M. S. Zholudev, K. E. Spirin, A. A. Lastovkin, K. V. Marem’yanin, V. Ya. Aleshkin, V. I. Gavrilenko, O. Drachenko, M. Helm, J. Wosnitza, M. Goiran, N. N. Mikhailov, S. A. Dvoretskii, F. Teppe, N. Diakonova, C. Consejo, B. Chenaud, and W. Knap, Semicond. Sci. Technol. 26, 125011 (2011).

    Article  ADS  Google Scholar 

  23. M. Schultz, F. Heinrichs, U. Merkt, T. Colin, T. Skauli, and S. Lovold, Semicond. Sci. Technol. 11, 1168 (1996).

    Article  ADS  Google Scholar 

  24. S. D. Ganichev, V. V. Bel’kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601 (2004).

    Article  ADS  Google Scholar 

  25. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  26. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Spirin.

Additional information

Original Russian Text © K.E. Spirin, K.P. Kalinin, S.S. Krishtopenko, K.V. Maremyanin, V.I. Gavrilenko, Yu.G. Sadofyev, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 11, pp. 1424–1429.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spirin, K.E., Kalinin, K.P., Krishtopenko, S.S. et al. Features of the persistent photoconductivity in InAs/AlSb heterostructures with double quantum wells and a tunneling-transparent barrier. Semiconductors 46, 1396–1401 (2012). https://doi.org/10.1134/S1063782612110206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612110206

Keywords

Navigation