Skip to main content
Log in

Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The temperature and concentration dependences of electron mobility in AlGaN/GaN hetero-structures are studied. The mobility for the samples under study at T = 300 K lies in the range of 450–1740 cm2/(V s). It is established that scattering at charged centers is dominant for samples with low mobility (lower than 1000 cm2/(V s) right up to room temperature. These centers are associated with a disordered piezoelectric charge at the heterointerface because of its roughness or with a piezoelectric charge similarly to the Al-GaN barrier because of alloy disorder, as well as with the deformation field around dislocations. Scattering at optical phonons is dominant for samples with mobility exceeding 1000 cm2/(V s) at T = 300 K. Scattering at alloy disorders, heterointerface roughness, and dislocations are dominant at temperatures lower than 200 K. A decrease in the influence of scattering at roughness with improvement of the heterointerface morphology increases room-temperature mobility from 1400 cm2/(V s) to 1700 cm2/(V s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Morcoç, Handbook of Nitride Semiconductors and Devices (Wiley-VCH, New York, 2008), vol. 1.

    Google Scholar 

  2. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999).

    Article  ADS  Google Scholar 

  3. M. S. Miao, J. R. Weber, and C. G. van de Walle, J. Appl. Phys. 107, 123713 (2010).

    Article  ADS  Google Scholar 

  4. M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, Appl. Phys. Lett. 97, 222104 (2010).

    Article  ADS  Google Scholar 

  5. J. Bernát, J. Javorka, A. Fox, M. Marso, H. Lüth, and P. Kordoš, Solid State Electron. 47, 2097 (2003).

    Article  ADS  Google Scholar 

  6. J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, Y.-F. Wu, and U. K. Mishra, J. Appl. Phys. 87, 3900 (2000).

    Article  ADS  Google Scholar 

  7. D. N. Quang, V. N. Tuoc, N. H. Tung Vu, N. V. Minh, and P. N. Phong, Phys. Rev. B 72, 245 (303) (2005).

    Google Scholar 

  8. Wang Yan, Shen Bo, Xu Fu-Jun, Huang Sen, Miao Zhen-Lin, Lin Fang, Yang Zhi-Jian, and Zhang Guo-Yi, Chin. Phys. B 18, 2002 (2009).

    Article  ADS  Google Scholar 

  9. D. Jena, A. C. Gossard, and U. K. Mishra, J. Appl. Phys. 88, 4734 (2000).

    Article  ADS  Google Scholar 

  10. D. Jena and U. K. Mishra, Appl. Phys. Lett. 80, 64 (2002).

    Article  ADS  Google Scholar 

  11. M. N. Gurusinghe, S. K. Davidsson, and T. G. Andersson, Phys. Rev. B 72, 045316 (2005).

    Article  ADS  Google Scholar 

  12. S. B. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E. Ozbay, Semicond. Sci. Technol. 22, 543 (2007).

    Article  ADS  Google Scholar 

  13. X. Han, Y. Honda, T. Narita, M. Yamaguchi, and N. Sawaki, J. Phys.: Condens. Matter 19, 046204 (2007).

    Article  ADS  Google Scholar 

  14. M. J. Manfra, K. W. Baldwin, A. M. Sergent, R. J. Molnar, and J. Caissie, Appl. Phys. Lett. 85, 1722 (2004).

    Article  ADS  Google Scholar 

  15. D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, Semicond. Sci. Technol. 19, 427 (2004).

    Article  ADS  Google Scholar 

  16. L. Hsu and W. Walukiewicz, Phys. Rev. B 56, 1520 (1997).

    Article  ADS  Google Scholar 

  17. V. V. Lundin, A. V. Sakharov, A. F. Tsatsulnikov, E. E. Zavarin, A. I. Besyul’kin, A. V. Fomin, and D. S. Sizov, Semiconductors 38, 678 (2004).

    Article  ADS  Google Scholar 

  18. B. M. Ayupov, S. F. Devyatova, V. G. Erkov, and L. A. Semenova, Mikroelektronika 37, 141 (2008).

    Google Scholar 

  19. J. H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).

  20. B. L. Gelmont, M. Shur, and M. Stroscio, J. Appl. Phys. 77, 657 (1995).

    Article  ADS  Google Scholar 

  21. K. Hirakawa and H. Sakaki, Phys. Rev. B 33, 8291 (1986).

    Article  ADS  Google Scholar 

  22. T. Ando, A. Fowler, and F. Stern, Rev. Mod. Phys. 54(2) (1982).

  23. W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).

    Article  ADS  Google Scholar 

  24. Debdeep, A. C. Gossard, and U. K. Mishra, Appl. Phys. Lett. 76, 1707 (2000).

    Article  ADS  Google Scholar 

  25. A. V. Tikhonov, T. V. Malin, K. S. Zhuravlev, L. Dobos, and B. Pecz, J. Cryst. Growth 338, 30 (2012).

    Article  ADS  Google Scholar 

  26. T. E. Shoup, Practical Guide to Computer Methods for Engineers (Prentice-Hall, Englewood Cliffs, NJ, 1979; Mir, Moscow, 1982).

    Google Scholar 

  27. I. V. Antonova, V. I. Polyakov, A. I. Rukovishnikov, V. G. Mansurov, and K. S. Zhuravlev, Semiconductors 42, 52 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Protasov.

Additional information

Original Russian Text © D.Yu. Protasov, T.V. Malin, A.V. Tikhonov, A.F. Tsatsulnikov, K.S. Zhuravlev, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 1, pp. 36–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Protasov, D.Y., Malin, T.V., Tikhonov, A.V. et al. Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas. Semiconductors 47, 33–44 (2013). https://doi.org/10.1134/S1063782613010181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613010181

Keywords

Navigation