Skip to main content
Log in

Effect of Features of the Band Spectrum on the Characteristics of Stimulated Emission in Narrow-Gap Heterostructures with HgCdTe Quantum Wells

  • XXII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 12–15, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We report on the stimulated emission obtained in the wavelength range of 20.3–17.4 μm on the interband transitions at T = 8–50 K in HgCdTe quantum wells placed in a dielectric waveguide formed from wide-gap CdHgTe solid solution. Heterostructures with HgCdTe quantum wells are interesting for designing long-wavelength lasers operating in the wavelength range of 25–60 μm, which is not covered by currently available quantum cascade lasers. It is shown that the maximum temperature of stimulated emission is determined by the position of lateral maxima in the dispersion dependences in the first valence subband of the quantum well. Methods for suppressing nonradiative recombination in the structures with HgCdTe quantum wells are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Vitiello, G. Scalari, B. Williams, and P. DeNatale, Opt. Express 23, 5167 (2015).

    Article  ADS  Google Scholar 

  2. M. F. Anwar, T. W. Crowe, T. Manzur, W. Terashima, and H. Hirayama, Proc. SPIE 9483, 948304 (2015).

    Article  Google Scholar 

  3. K. V. Maremyanin, V. V. Rumyantsev, A. V. Ikonnikov, L. S. Bovkun, E. G. Chizhevskii, I. I. Zasavitskii, and V. I. Gavrilenko, Semiconductors 50, 1669 (2016).

    Article  ADS  Google Scholar 

  4. J. Dimmock, I. Melngailis, and A. Strauss, Phys. Rev. Lett. 16, 1193 (1966).

    Article  ADS  Google Scholar 

  5. I. I. Zasavitskii, Tr. FIAN 224, 3 (1993).

    Google Scholar 

  6. V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (North-Holland, Elsevier Science, Amsterdam, 1991).

    Google Scholar 

  7. G. Alymov, D. Svintsov, V. Vyurkov, V. Ryzhii, and A. Satou, arXiv:1709.09015 (2018).

  8. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science (Washington, DC, U. S.) 314 (5806), 1757 (2006).

    Article  ADS  Google Scholar 

  9. A. M. Kadykov, J. Torres, S. S. Krishtopenko, C. Consejo, S. Ruffenach, M. Marcinkiewicz, D. But, W. Knap, S. V. Morozov, V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretsky, and F. Teppe, Appl. Phys. Lett. 108, 262102 (2016).

    Article  ADS  Google Scholar 

  10. V. S. Varavin, V. V. Vasiliev, S. A. Dvoretsky, N. N. Mikhailov, V. N. Ovsyuk, Yu. G. Sidorov, A. O. Suslyakov, M. V. Yakushev, and A. L. Aseev, Opto-Electron. Rev. 11, 99 (2003).

    Google Scholar 

  11. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, K. V. Maremyanin, K. E. Kudryavtsev, L. V. Krasilnikova, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 104, 072102 (2014).

    Article  ADS  Google Scholar 

  12. V. V. Rumyantsev, S. V. Morozov, A. V. Antonov, M. S. Zholudev, K. E. Kudryavtsev, V. I. Gavrilenko, S. A. Dvoretskii, and N. N. Mikhailov, Semicond. Sci. Technol. 28, 125007 (2013).

    Article  ADS  Google Scholar 

  13. S. V. Morozov, V. V. Rumyantsev, A. V. Antonov, A. M. Kadykov, K. V. Maremyanin, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 105, 022102 (2014).

    Article  ADS  Google Scholar 

  14. S. Ruffenach, A. Kadykov, V. V. Rumyantsev, J. Torres, D. Coquillat, D. But, S. S. Krishtopenko, C. Consejo, W. Knap, S. Winnerl, M. Helm, M. A. Fadeev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, S. V. Morozov, and F. Teppe, APL Mater. 5, 035503 (2017).

    Article  ADS  Google Scholar 

  15. S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, Appl. Phys. Lett. 111, 192101 (2017).

    Article  ADS  Google Scholar 

  16. J. Bleuse, J. Bonnet-Gamard, G. Mula, N. Magnea, and P. Jean-Louis, J. Cryst. Growth 197, 529 (1999).

    Article  ADS  Google Scholar 

  17. J. M. Arias, M. Zandian, R. Zucca, and J. Singh, Semicond. Sci. Techn. 8, S255 (1993).

    Article  ADS  Google Scholar 

  18. V. V. Rumyantsev, A. M. Fadeev, A. A. Dubinov, V. V. Utochkin, N. N. Mikhailov, S. A. Dvoretskii, S. V. Morozov, and V. I. Gavrilenko, Semiconductors 51, 1557 (2017).

    Article  ADS  Google Scholar 

  19. N. N. Mikhailov, S. A. Dvoretskii, D. G. Ikusov, V. G. Remesnik, V. A. Shvets, and I. N. Uzhakov, in Proceedings of the 22nd International Symposium on Nanophysics and Nanoelectronics, March 12–15, 2018, Nizhnii Novgorod.

  20. J. Shao, W. Lu, X. Lü, F. Yue, Z. Li, S. Guo, and J. Chu, Rev. Sci. Instrum. 77, 063104 (2006).

    Article  ADS  Google Scholar 

  21. S. V. Morozov, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, K. E. Kudryavtsev, A. V. Antonov, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 108, 092104 (2016).

    Article  ADS  Google Scholar 

  22. S. V. Morozov, V. V. Rumyantsev, A. A. Dubinov, A. V. Antonov, A. M. Kadykov, K. E. Kudryavtsev, D. I. Kuritsin, N. N. Mikhailov, S. A. Dvoretskii, and V. I. Gavrilenko, Appl. Phys. Lett. 107, 042105 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 16-32-60172. Characterization of the structures using the measured photoluminescence spectra and calculated band spectrum was made in the framework of the state task for the Institute for Physics of Microstructures, Russian Academy of Sciences, theme no. 0035-2014-0201 and supported by the Ministry of Education and Science of the Russian Federation, project no. 4399.2018.2.The USU Femtospektr facility of the Center for Collective Use of the Institute for Physics of Microstructures, Russian Academy of Sciences was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, V.V., Kulikov, N.S., Kadykov, A.M. et al. Effect of Features of the Band Spectrum on the Characteristics of Stimulated Emission in Narrow-Gap Heterostructures with HgCdTe Quantum Wells. Semiconductors 52, 1375–1379 (2018). https://doi.org/10.1134/S1063782618110234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618110234

Keywords

Navigation