Skip to main content
Log in

Performance Investigation of Organic Thin Film Transistor on Varying Thickness of Semiconductor Material: An Experimentally Verified Simulation Study

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Physics-based two-dimensional numerical simulations are performed to analyze the device characteristics of tri-isopropylsilylethynyl (TIPS)-pentacene organic thin-film transistor (OTFT) fabricated using drop-casting technique. Further, using simulation technique enabling calibration this paper also presents the systematic study of the impact of active layer (TIPS-pentacene) thickness on device characteristics. The extracted parameters such as electric field intensity, current density, current On/Off ratio, and mobility exhibit variation with scaling down in active layer thickness from 500 to 100 nm. The study also revealed that Off current and On/Off current ratio (IOn/IOff) is highly dependent on the thickness of the semiconductor layer. Furthermore, the highest value of IOn/IOff is obtained at 100-nm thickness of TIPS-pentacene, which can be used for various fast-switching applications in digital circuits. Simulated results are not only reasonably matching with experimental results but also provide insight on charge transportation at the semiconductor-dielectric interface and in the bulk of TIPS-pentacene layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, IEEE Electron Dev. Lett. 27, 249 (2006).

    Article  ADS  Google Scholar 

  2. P. Mittal, Y. S. Negi, and R. K. Singh, J. Semicond. 35, 124002 (2014).

  3. T. Zaki, R. Rodel, F. Letzkus, H. Richter, U. Zschieschang, H. Klauk, and J. N. Burghartz, Org. Electron. 14, 1318 (2013).

    Article  Google Scholar 

  4. S. Sharma and T. Varma, Mater. Res. Express 6, 025005 (2018).

    Article  ADS  Google Scholar 

  5. W. Wondmagegn and R. Pieper, J. Comput. Electron. 8, 19 (2009).

    Article  Google Scholar 

  6. P. Vimala and S. T. S. Arun, Semiconductors 54, 501 (2020).

    Article  ADS  Google Scholar 

  7. B. C. Shekar, J. Lee, and S. Woo-Rhee, Korean J. Chem. Eng. 21, 267 (2004).

    Article  Google Scholar 

  8. Z. Tang and C. R. Wie, Solid-State Electron. 54, 259 (2009).

    Article  ADS  Google Scholar 

  9. M. Kano, T. Minari, K. Tsukagoshi, and H. Maeda, Appl. Phys. Lett. 98, 073307 (2011).

    Article  ADS  Google Scholar 

  10. H. Wang, L. Li, Z. Ji, C. Lu, J. Guo, L. Wang, and M. Liu, IEEE Electron Dev. Lett. 34, 69 (2013).

    Article  ADS  Google Scholar 

  11. C. Y. Han, Y. X. Ma, W. M. Tang, X. L. Wang, and P. T. Lai, IEEE Electron Dev. Lett. 38, 744 (2017).

    Article  ADS  Google Scholar 

  12. S. K. Tripathi, M. S. Ansari, and A. M. Joshi, VLSI Des. 2018, 1080817 (2018).

    Article  Google Scholar 

  13. R. Schroeder, L. Majewski, and M. Grell, Appl. Phys. Lett. 83, 3201 (2003).

    Article  ADS  Google Scholar 

  14. A. Takshi, A. Dimopoulos, and J. D. Madden, IEEE Trans. Electron Dev. 55, 276 (2008).

    Article  ADS  Google Scholar 

  15. D. Gupta and Y. Hong, Org. Electron. 11, 127 (2010).

    Article  Google Scholar 

  16. D. Bharti and S. P. Tiwari, Synth. Met. 221, 186 (2016).

    Article  Google Scholar 

  17. D. Gupta, M. Katiyar, and D. Gupta, Org. Electron. 10, 775 (2009).

    Article  Google Scholar 

  18. ATLAS and ATHENA User’s Manual: Process and Device Simulation Software (Silvaco Int., Santa Clara, 2012).

  19. D. Gupta, N. Jeon, and S. Yoo, Org. Electron. 9, 1026 (2008).

    Article  Google Scholar 

  20. T.-J. Ha, D. Sparrowe, and A. Dodabalapur, Org. Electron. 12, 1846 (2011).

    Article  Google Scholar 

  21. A. Buonomo and C. di Bello, Electron. Lett. 20, 156 (1984).

    Article  ADS  Google Scholar 

  22. D. Hertel and H. Bässler, ChemPhysChem. 9, 666 (2008).

    Article  Google Scholar 

  23. C. H. Shim, F. Maruoka, and R. Hattori, IEEE Trans. Electron Dev. 57, 195 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Visvesvaraya PhD scheme/MeitY of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Joshi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S.K., Joshi, A.M. & Bharti, D. Performance Investigation of Organic Thin Film Transistor on Varying Thickness of Semiconductor Material: An Experimentally Verified Simulation Study. Semiconductors 54, 1483–1489 (2020). https://doi.org/10.1134/S106378262011010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262011010X

Keywords:

Navigation