Skip to main content
Log in

Mechanism governing modification of the properties of the normal state and the critical temperatures under codoping of YBa2Cu3Oy by calcium and praseodymium

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the electrical resistivity and thermopower coefficient in the Y1−2x CaxPrxBa2Cu3Oy system are studied experimentally, and their analysis is performed in the light of earlier data on the effect of separate calcium and praseodymium doping in yttrium sites. It is found that codoping calcium and praseodymium ions into the lattice does not result in summation of the individual effects of the dopants on either the critical temperature or the temperature dependences of the thermopower coefficient. The results obtained are analyzed within the narrow band model, and the parameters of the band structure and charge carrier system in the samples are determined. The character and mechanism of variation in these parameters with increasing doping level are examined. It is suggested that interaction of calcium with praseodymium ions weakens the effect of hybridization of band states with praseodymium ion states through the involvement of additional states introduced by calcium into the conduction band. This assumption accounts for all the features revealed in the variation of the properties of the normal state and the critical temperature with increasing doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Manthiram and J. B. Goodenough, Physica C (Amsterdam) 159(6), 760 (1989).

    ADS  Google Scholar 

  2. E. Suard, V. Caignaert, A. Maignan, and B. Reveau, Physica C (Amsterdam) 182(4–6), 219 (1991).

    ADS  Google Scholar 

  3. Y. Zhao, Y. He, H. Zhang, X. Zuge, and X. Tang, J. Phys.: Condens. Matter 4(9), 2263 (1992).

    Article  ADS  Google Scholar 

  4. E. Suard, A. Maignan, V. Caignaert, and B. Raveau, Physica C (Amsterdam) 200,(1–2), 43 (1992).

    ADS  Google Scholar 

  5. V. E. Gasumyants, E. V. Vladimirskaya, and I. B. Patrina, Physica C (Amsterdam) 235–240, Part 2, 1467 (1994).

    Google Scholar 

  6. E. V. Vladimirskaya, V. É. Gasumyants, and I. B. Patrina, Fiz. Tverd. Tela (St. Petersburg) 37(7), 1990 (1995) [Phys. Solid State 37 (7), 1084 (1995)].

    Google Scholar 

  7. V. E. Gasumyants, M. V. Elizarova, E. V. Vladimirskaya, and I. B. Patrina, Physica C (Amsterdam) 341–348, 585 (2000).

    Google Scholar 

  8. B. Fisher, J. Genossar, C. G. Kuper, L. Patlagan, G. M. Reisner, and A. Knizhnik, Phys. Rev. B: Condens. Matter 47(10), 6054 (1993).

    ADS  Google Scholar 

  9. V. É. Gasumyants, E. V. Vladimirskaya, M. V. Elizarova, and N. V. Ageev, Fiz. Tverd. Tela (St. Petersburg) 40(12), 2145 (1998) [Phys. Solid State 40 (12), 1943 (1998)].

    Google Scholar 

  10. V. P. S. Awana, S. K. Malik, and W. B. Yelon, Physica C (Amsterdam) 262(3–4), 272 (1996).

    ADS  Google Scholar 

  11. V. E. Gasumyants, Advances in Condensed Matter and Materials Research, Ed. by F. Gerard (Nova Science, New York, 2001), Vol. 1, p. 135.

    Google Scholar 

  12. A. Manthiram, S.-J. Lee, and J. B. Goodenough, J. Solid State Chem. 73(1), 278 (1988).

    Article  ADS  Google Scholar 

  13. Z. Jirak, J. Hejtmanek, E. Pollert, A. Triska, and P. Vasek, Physica C (Amsterdam) 156(5), 750 (1988).

    ADS  Google Scholar 

  14. Y. Sun, G. Strasser, E. Gornik, W. Seidenbusch, and W. Rauch, Physica C (Amsterdam) 206(3–4), 291 (1993).

    ADS  Google Scholar 

  15. G. Xiao and N. S. Rebello, Physica C (Amsterdam) 211(3–4), 433 (1993).

    ADS  Google Scholar 

  16. E. M. McCarron III, M. K. Crawford, and J. B. Parise, J. Solid State Chem. 78(1), 192 (1989).

    Article  Google Scholar 

  17. J. B. Parise and E. M. McCarron III, J. Solid State Chem. 83(2), 188 (1989).

    Article  ADS  Google Scholar 

  18. R. S. Liu, J. R. Cooper, J. W. Loram, W. Zhou, W. Lo, P. P. Edwards, W. Y. Liang, and L. S. Chen, Solid State Commun. 76(5), 679 (1990).

    Article  Google Scholar 

  19. R. A. Gunasekaran, R. Ganduly, and J. V. Yakhmi, Physica C (Amsterdam) 234,(1–2), 160 (1995).

    ADS  Google Scholar 

  20. M. V. Elizarova, O. A. Martinova, D. V. Potapov, V. É. Gasumyants, and L. P. Mezentseva, Fiz. Tverd. Tela (St. Petersburg) 47(3), 422 (2005) [Phys. Solid State 47 (3), 434 (2005)].

    Google Scholar 

  21. V. E. Gasumyants, M. V. Elizarova, and I. B. Patrina, Phys. Rev. B: Condens. Matter 59(5), 6550 (1999).

    ADS  Google Scholar 

  22. M. V. Elizarova and V. É. Gasumyants, Fiz. Tverd. Tela (St. Petersburg) 41(8), 1363 (1999) [Phys. Solid State 41 (8), 1248 (1999)].

    Google Scholar 

  23. V. E. Gasumyants, M. V. Elizarova, and I. B. Patrina, Supercond. Sci. Technol. 13(12), 1600 (2000).

    Article  ADS  Google Scholar 

  24. Y. Zhao, H. K. Liu, and S. X. Dou, Physica C (Amsterdam) 179(1–3), 207 (1991).

    ADS  Google Scholar 

  25. M. G. Smith, R. D. Taylor, and H. Oesterreicher, J. Appl. Phys. 69(8), 4894 (1991).

    Article  ADS  Google Scholar 

  26. Z. Xu, S. Ouyang, J. Wang, X. Tang, and Q. Zhang, Chin. Sci. Bull. 37(18), 1520 (1992).

    Google Scholar 

  27. M. H. Whangbo and C. C. Torardi, Science (Washington) 249(4973), 1143 (1990).

    ADS  Google Scholar 

  28. V. E. Gasumyants, V. I. Kaidanov, and E. V. Vladimirskaya, Physica C (Amsterdam) 248(3–4), 255 (1995).

    ADS  Google Scholar 

  29. S. R. Ghorbani, M. Andersson, and O. Rapp, Physica C (Amsterdam) 390(2), 160 (2003).

    ADS  Google Scholar 

  30. J. Fink, N. Nücker, H. Romberg, M. Alexander, M. B. Maple, J. J. Neumeier, and J. W. Allen, Phys. Rev. B: Condens. Matter 42(7), 4823 (1990).

    ADS  Google Scholar 

  31. H.-C. I. Kao, F. C. Yu, and W. Guan, Physica C (Amsterdam) 292(1–2), 53 (1997).

    ADS  Google Scholar 

  32. V. É. Gasumyants, E. V. Vladimirskaya, and I. B. Patrina, Fiz. Tverd. Tela (St. Petersburg) 39(9), 1520 (1997) [Phys. Solid State 39 (9), 1352 (1997)].

    Google Scholar 

  33. V. E. Gasumyants, M. V. Elizarova, and R. Suryanarayanan, Phys. Rev. B: Condens. Matter 61(18), 12404 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Martynova, V.É. Gasumyants, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 7, pp. 1157–1163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, O.A., Gasumyants, V.É. Mechanism governing modification of the properties of the normal state and the critical temperatures under codoping of YBa2Cu3Oy by calcium and praseodymium. Phys. Solid State 48, 1223–1229 (2006). https://doi.org/10.1134/S106378340607002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378340607002X

PACS numbers

Navigation