Skip to main content
Log in

Atomistic simulation of plasticity and fracture of nanocrystalline copper under high-rate tension

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A molecular dynamics simulation of the plastic deformation and the onset of fracture of nanocrystalline metals is performed using the example of copper. Successive stages of the response of the microstructure of a metal to deformation are considered, namely, grain boundary sliding, the nucleation and gliding of dislocations, and the formation and growth of microdamage nuclei. The influence of the grain size of a nanocrystal on its plasticity and strength is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Ovid’ko, T. Tsakalakos, and A. K. Vasudevan, Synthesis, Functional Properties, and Applications of Nanostructures (Kluwer, Dordrecht, 2003).

    Google Scholar 

  2. I. F. Golovnev, E. I. Golovneva, and V. M. Fomin, Comput. Mater. Sci. 37, 336 (2006).

    Article  Google Scholar 

  3. S. A. Kotrechko, A. V. Filatov, and A. V. Ovsjannikov, Theor. Appl. Fract. Mech. 45, 92 (2006).

    Article  Google Scholar 

  4. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)].

    Google Scholar 

  5. B. I. Smirnov, V. V. Shpeĭzman, and V. I. Nikolaev, Fiz. Tverd. Tela (St. Petersburg) 47(5), 816 (2005) [Phys. Solid State 47 (5), 840 (2005)].

    Google Scholar 

  6. R. W. Siegel and G. E. Fougere, Nanostruct. Mater. 6, 205 (1995).

    Article  Google Scholar 

  7. R. Valiev, Nat. Mater. 3, 511 (2004).

    Article  ADS  Google Scholar 

  8. M. I. Alymov, A. I. Epishin, G. Nol’tse, T. Link, S. S. Bedov, and A. B. Ankudinov, Ross. Nanotekhnol. 2, 124 (2007).

    Google Scholar 

  9. D. Wolf, V. Yamakov, S. R. Phillpot, A. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  10. H. van Swygenhoven and J. R. Weertman, Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  11. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(6), 961 (2007) [Phys. Solid State 49 (6), 1013 (2007)].

    Google Scholar 

  12. M. Yu. Gutkin and I. A. Ovid’ko, Usp. Mekh. 1, 69 (2003).

    Google Scholar 

  13. A. M. Krivtsov, Meccànica 38, 61 (2003).

    Article  MATH  Google Scholar 

  14. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B: Condens. Matter 63, 224 106 (2001).

    Google Scholar 

  15. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B: Condens. Matter 58, 11 085 (1998).

    Google Scholar 

  16. K. W. Jakobsen and J. Schiotz, Science (Washington) 301, 1357 (2003).

    Article  ADS  Google Scholar 

  17. V. P. Skripov and M. Z. Faĭzullin, Crystal-Liquid-Vapor Phase Phase Transitions and Thermodynamic Similarity (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  18. A. Yu. Kuksin, G. E. Norman, and V. V. Stegailov, Teplofiz. Vys. Temp. 45(1), 43 (2007) [High Temp. 45 (1), 37 (2007)].

    Google Scholar 

  19. G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, Teplofiz. Vys. Temp. 45(2), 193 (2007) [High Temp. 45 (2), 164 (2007)].

    Google Scholar 

  20. V. V. Stegailov and A. V. Yanilkin, Zh. Éksp. Teor. Fiz. 131(6), 1064 (2007) [JETP 104 (6), 928 (2007)].

    Google Scholar 

  21. A. Yu. Kuksin and A. V. Yanilkin, Dokl. Akad. Nauk 413, 615 (2007) [Dokl. Phys. 52 (4), 186 (2007)].

    Google Scholar 

  22. V. Dremov, A. Petrovtsev, P. Sapozhnikov, M. Smirnova, D. L. Preston, and M. A. Zocher, Phys. Rev. B: Condens. Matter 74, 144 110 (2006).

    Google Scholar 

  23. T. Germann and S. Valone, Report No. LA-UR-05-7623.

  24. S. V. Razorenov and G. I. Kanel’, Fiz. Met. Metalloved. 78(11), 141 (1992).

    Google Scholar 

  25. E. Moshe, S. Eliezer, Z. Henis, M. Werdiger, E. Dekel, Y. Horovitz, S. Maman, I. B. Goldberg, and D. Eliezer, Appl. Phys. Lett. 76, 1555 (2000).

    Article  ADS  Google Scholar 

  26. D. Paisley, R. Warnes, and R. Kopp, in Progress in Shock Compression of Condensed Matter-1991, Ed. by S. C. Schmidt, R. D. Dick, J. Forbes, and D. G. Tasker (Elsevier, New York, 1992), p. 825.

    Google Scholar 

  27. A. I. Slutsker, Fiz. Tverd. Tela (St. Petersburg) 46(9), 1606 (2004) [Phys. Solid State 46 (9), 1658 (2004)].

    Google Scholar 

  28. D. A. Indeitsev, A. M. Krivtsov, and V. P. Tkachev, Dokl. Akad. Nauk 407, 341 (2006) [Dokl. Phys. 52 (3), 154 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yanilkin.

Additional information

Original Russian Text © A.Yu. Kuksin, V.V. Stegaĭlov, A.V. Yanilkin, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 11, pp. 1984–1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuksin, A.Y., Stegaĭlov, V.V. & Yanilkin, A.V. Atomistic simulation of plasticity and fracture of nanocrystalline copper under high-rate tension. Phys. Solid State 50, 2069–2075 (2008). https://doi.org/10.1134/S1063783408110115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408110115

PACS numbers

Navigation