Skip to main content
Log in

Ab initio calculations of the vibrational spectra of AgInSe2 and AgInTe2

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The phonon spectra and densities of states of AgInSe2 and AgInTe2 semiconductor crystals with a chalcopyrite structure have been calculated from first principles by the linear response method. The frequencies calculated at the center of the Brillouin zone are in agreement with the experimental data obtained using IR and Raman spectroscopy. According to the atomic contributions to the vibrational modes, the spectra of the AgInSe2 and AgInTe2 crystals exhibit three groups of bands: the vibrations in the low- and medium-frequency ranges are mixed in character with approximately identical contributions of all sublattices, and the bands at higher frequencies are associated with the contributions of Ag, C VI and In, C VI (C VI = Se, Te) atoms. The position of these bands allows us to make the inference that, in the crystals under investigation, the In-C VI bonding is stronger than the Ag-C VI bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. El-Korashy, M. A. Abdel-Rahim, and H. El-Zahed, Thin Solid Films 338, 207 (1999).

    Article  ADS  Google Scholar 

  2. M. C. Santhosh Kumar, and B. Pradeep, Vacuum 72, 369 (2004).

    Article  Google Scholar 

  3. H. Mustafa, D. Hunter, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, Thin Solid Films 515, 7001 (2007).

    Article  ADS  Google Scholar 

  4. S. Ozaki and S. Adachi, Phys. Status Solidi A 203, 2919 (2006).

    Article  ADS  Google Scholar 

  5. K. Kishigui, K. Abe, G. Murakami, Y. Shim, K. Yoshino, and K. Wakita, Thin Solid Films 517, 1445 (2008).

    Article  ADS  Google Scholar 

  6. M. Díaz, L. M. de Chalbaud, V. Sagredo, T. Tinoco, and C. Pineda, Phys. Status Solidi B 220, 281 (2000).

    Article  ADS  Google Scholar 

  7. C. Bellabarba, Mater. Lett. 36, 299 (1998).

    Article  Google Scholar 

  8. P. Kistaiah and K. S. Murthy, J. Phys. D: Appl. Phys. 18, 861 (1985).

    Article  ADS  Google Scholar 

  9. C. Bellabarba and S. M. Wasim, Phys. Status Solidi A 66, K105 (1981).

    Article  Google Scholar 

  10. G. Kanellis and K. Kampas, Mater. Res. Bull. 13, 9 (1978).

    Article  Google Scholar 

  11. F. W. Ohrendorf and H. Haeuseler, Cryst. Res. Technol. 34, 339 (1999).

    Article  Google Scholar 

  12. A. Jagomägi, J. Krustok, J. Raudoja, M. Grossberg, I. Oja, M. Krunks, and M. Danilson, Thin Solid Films 480/481, 246 (2005).

    Article  ADS  Google Scholar 

  13. A. V. Kopytov and A. S. Poplavnoĭ, Izv. Vyssh. Uchebn. Zaved., Fiz. 25(10), 124 (1982).

    Google Scholar 

  14. F. W. Ohrendorf and H. Haeuseler, Cryst. Res. Technol. 34, 351 (1999).

    Article  Google Scholar 

  15. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  Google Scholar 

  16. S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org.

  17. R. Eryiğit, C. Parlak, and R. Eryiğit, Eur. Phys. J. B 33, 251 (2003).

    Article  ADS  Google Scholar 

  18. T. Gürel and R. Eryiğit, J. Phys.: Condens. Matter 18, 1413 (2006).

    Article  Google Scholar 

  19. A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B: Condens. Matter 41, 1227 (1990).

    ADS  Google Scholar 

  20. S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B: Condens. Matter 26, 1738 (1982).

    ADS  Google Scholar 

  21. J. L. Shay and J. N. Vernick, Ternary Chalcopyrite Semiconductors (Pergamon, New York, 1975).

    Google Scholar 

  22. P. Benoit, P. Charpin, R. Lesueur, and C. Djega-Mariadassou, Jpn. J. Appl. Phys., Suppl. 19(3), 85 (1980).

    Google Scholar 

  23. A. M. Moustafa, E. A. El-Sayad, and G. B. Sakr, Cryst. Res. Technol. 39, 266 (2004).

    Article  Google Scholar 

  24. F. Favot and A. Dal Corso, Phys. Rev. B: Condens. Matter 60, 11427 (1999).

    ADS  Google Scholar 

  25. A. M. Mintairov, N. A. Sadchikov, T. Sauncy, M. Holtz, G. A. Seryogin, S. A. Nikishin, and H. Temkin, Phys. Rev. B: Condens. Matter 59, 15197 (1999).

    Google Scholar 

  26. C. Rincón, S. M. Wasim, G. Marĭn, E. Hernández, and J. Galibert, J. Phys. Chem. Solids 62, 847 (2001).

    Article  ADS  Google Scholar 

  27. A. V. Kosobutsky, Yu. M. Basalaev, and A. S. Poplavnoi, Phys. Status Solidi B 246, 364 (2009).

    Article  Google Scholar 

  28. J. Łażewski, K. Parlinski, B. Hennion, and R. Fouret, J. Phys.: Condens. Matter 11, 9665 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kosobutsky.

Additional information

Original Russian Text © A.V. Kopytov, A.V. Kosobutsky, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 10, pp. 1994–1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopytov, A.V., Kosobutsky, A.V. Ab initio calculations of the vibrational spectra of AgInSe2 and AgInTe2 . Phys. Solid State 51, 2115–2120 (2009). https://doi.org/10.1134/S1063783409100217

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409100217

PACS numbers

Navigation