Skip to main content
Log in

Manifestation of the heterogeneous mechanism upon melting of low-dimensional systems

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A melting process that is always heterogeneous in semi-infinite systems having a surface has been analyzed. It has been shown in terms of the classical thermodynamics that, in real one-component systems, a liquid layer on the solid-phase surface is formed at temperatures lower than the reference melting temperature of the bulk material at which the system is completely melted. Depending on the temperature, a liquid layer of particular thickness on the surface is in equilibrium with the other crystalline phase. The heterogeneous melting is shown to influence a number of processes and mechanisms, such as the dispersion of a thin film into droplets, the mechanism of vapor-liquid-solid epitaxy, the mechanism of layer-by-layer crystal growth, and the mechanism of growth of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. Yu. F. Komnik, Physics of Metal Films: Dimensional and Structural Effects (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  3. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Fizmatlit, Moscow, 2001; Cambridge International Science, Cambridge, 2004).

    Google Scholar 

  4. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials (Kom-Kniga, Moscow, 2006) [in Russian].

    Google Scholar 

  5. R. A. Andrievskiĭ and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  6. U. Tartaglino, T. Zykova-Timan, F. Ercolessi, and E. Tosatti, Phys. Rep. 411, 291 (2005).

    Article  ADS  Google Scholar 

  7. P. Müller and R. Kern, Surf. Sci. 529, 59 (2003).

    Article  Google Scholar 

  8. Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  9. D. G. Gromov, S. A. Gavrilov, and E. N. Redichev, Zh. Fiz. Khim. 79(9), 1578 (2005) [Russ. J. Phys. Chem. 79 (9), 1394 (2005)].

    Google Scholar 

  10. D. G. Gromov, S. A. Gavrilov, E. N. Redichev, A. V. Klimovitskaya, and R. M. Ammosov, Zh. Fiz. Khim. 80(10), 1856 (2006) [Russ. J. Phys. Chem. 80 (10), 1650 (2006)].

    Google Scholar 

  11. D. G. Gromov, S. A. Gavrilov, E. N. Redichev, and R.M. Ammosov, Fiz. Tverd. Tela (St. Petersburg) 49(1), 172 (2007) [Phys. Solid State 49 (1), 178 (2007)].

    Google Scholar 

  12. S. S. Belousov, S. A. Gavrilov, D. G. Gromov, E. N. Redichev, and I. S. Chulkov, Izv. Vyssh. Uchebn. Zaved., Élektron., No. 1, 15 (2007).

  13. V. I. Roldugin, Physicochemistry of the Surface (Intellekt, Dolgoprudnyĭ, Moscow region, Russia, 2008) [in Russian].

    Google Scholar 

  14. V. M. Dubin, “Method for Filling High Aspect Ratio Openings of an Integrated Circuit to Minimize Electromigration Failure,” US Patent No. 6,077,780 (2000).

  15. V. F. Kiselev, S. N. Kozlov, and A. V. Zoteev, Fundamentals of the Solid Surface Physics (Moscow State University, Moscow, 1999) [in Russian].

    Google Scholar 

  16. R. M. Goodman, H. H. Farrell, and G. A. Somorjai, J. Chem. Phys. 48, 1046 (1968).

    Article  ADS  Google Scholar 

  17. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991; CRC Press, Boca-Raton, FL, United States, 1996).

    Google Scholar 

  18. J. Emsley, The Elements (Oxford University Press, Oxford, 1991; Mir, Moscow, 1993).

    Google Scholar 

  19. B. Pluis, A. W. Denier van der Gon, and J. F. van der Veen, Surf. Sci. 239, 265 (1990); Y. Shigeta and Y. Fukaya, Appl. Surf. Sci. 237, 21 (2004).

    Article  ADS  Google Scholar 

  20. J. W. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Article  ADS  Google Scholar 

  21. J. W. Cahn, J. Phys. (Paris) 43, 6 (1982).

    Google Scholar 

  22. A. A. Chernov and L. V. Mikheev, Physica A (Amsterdam) 157, 1042 (1989).

    ADS  Google Scholar 

  23. A. A. Chernov and V. A. Yakovlev, Langmuir 3, 635 (1987).

    Article  Google Scholar 

  24. A. A. Chernov and L. V. Mikheev, Phys. Rev. Lett. 60, 2488 (1988).

    Article  ADS  Google Scholar 

  25. D. G. Gromov, A. I. Mochalov, A. G. Klimovitskiy, A. D. Sulimin, and E. N. Redichev, Appl. Phys. 81, 1337 (2005).

    Article  Google Scholar 

  26. E. N. Redichev, D. G. Gromov, S. A. Gavrilov, A. I. Mochalov, and R. M. Ammosov, Proc. SPIE-Int. Soc. Opt. Eng. 6260, 62601H–1 (2006).

    Google Scholar 

  27. A. A. Buzdugan, S. A. Gavrilov, D. G. Gromov, E. N. Redichev, and I. S. Chulkov, Izv. Vyssh. Uchebn. Zaved., Élektron., No. 2, 21 (2007).

  28. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill Book Company, New York, 1958; Metallurgizdat, Moscow, 1962).

    Google Scholar 

  29. A. P. Dostanko, V. V. Baranov, and V. V. Shatalov, Current-Carrying Film Systems for VLSI Application (Vysheĭshaya Shkola, Minsk, 1989) [in Russian].

    Google Scholar 

  30. A. E. Rubtsov, Obz. Élektron. Tekh., Ser. 6: Mater., No. 4(897), 49 (1982).

  31. B. Carriere and J. P. Deville, Surf. Sci. 80, 278 (1979).

    Article  ADS  Google Scholar 

  32. Processes of the Real Crystal Formation, Ed. by N. V. Belov (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  33. Yu. D. Chistyakov and Yu. P. Raĭnova, Physicochemical Foundations of Microelectronic Technology (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  34. M. Wautelet, J. P. Dauchot, and M. Hecq, Nanotechnology 11, 6 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Gromov.

Additional information

Original Russian Text © D.G. Gromov, S.A. Gavrilov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 10, pp. 2012–2021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gromov, D.G., Gavrilov, S.A. Manifestation of the heterogeneous mechanism upon melting of low-dimensional systems. Phys. Solid State 51, 2135–2144 (2009). https://doi.org/10.1134/S1063783409100242

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409100242

PACS numbers

Navigation