Skip to main content
Log in

Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on a study by angle-resolved photoelectron and low-energy electron energy loss spectroscopy of graphene monolayers, which are produced by propylene cracking on the Ni(111) surface, followed by intercalation of Cu, Ag, and Au atoms between the graphene monolayer and the substrate, for various thicknesses of deposited metal layers and annealing temperatures. It has been shown that the spectra of valence-band π states and of phonon vibrational modes measured after intercalation become similar to those characteristic of single-crystal graphite with weak interlayer coupling. Despite the strong coupling of the graphene monolayer to the substrate becoming suppressed by intercalation of Cu and Ag atoms, the π state branch does not reach at the K point of the Brillouin zone the Fermi level, with the graphene coating itself breaking up partially to form graphene domains. At the same time after intercalation of Au atoms, the electronic band structure approaches the closest to that of isolated graphene, with linear π-state dispersion near the K point of the Brillouin zone, and the point of crossing of the filled, (π), with empty, (π*), states lying in the region of the Fermi level, which makes this system a promising experimental model of the quasi-free graphene monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).

    Article  Google Scholar 

  3. A. K. Geim and K. C. Novoselov, Nat. Mater. 4, 183 (2007).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  5. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).

    Article  ADS  Google Scholar 

  6. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).

    Article  ADS  Google Scholar 

  7. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

    Article  Google Scholar 

  8. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science (Washington) 313, 951 (2006).

    Article  ADS  Google Scholar 

  9. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, Phys. Rev. Lett. 101, 086402 (2008).

    Article  ADS  Google Scholar 

  10. E. V. Castro, K. S. Novoselov, S. V. Morosov, N. M. R. Peres, J. M. B. Lopes dos Santos, D. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  11. S. Y. Zhou, G. H. Gweon, and A. Lanzara, Ann. Phys. (Weinheim, Ger.) 321, 1730 (2006).

    ADS  Google Scholar 

  12. F. Forbeaux, J.-M. Themlin, and J.-M. Deber, Phys. Rev. B: Condens. Matter 58, 16396 (1998).

    ADS  Google Scholar 

  13. W.-H. Soe, K.-H. Rieder, A. M. Shikin, V. Mozhaiskii, A. Varykhalov, and O. Rader, Phys. Rev. B: Condens. Matter 70, 115421 (2004).

    ADS  Google Scholar 

  14. T. Seyller, K. V. Emtsev, K. Gao, F. Speck, L. Ley, A. Tadich, L. Broekman, J. D. Riley, R. C. G. Leckey, O. Rader, A. Varykhalov, and A. M. Shikin, Surf. Sci. 600, 3906 (2006).

    Article  ADS  Google Scholar 

  15. S. Sahoo, T. Kontos, J. Fuber, C. Hoffmann, M. Graeber, A. Cottet, and C. Schoenenberger, Nat. Phys. 1, 99 (2005).

    Article  Google Scholar 

  16. N. Tombros, C. Jozsa, M. Popincluc, H. T. Jonkman, and B. J. Wees, Nature (London) 448, 571 (2007).

    Article  ADS  Google Scholar 

  17. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. N. First, and W. A. Heer, Science (Washington) 312, 1191 (2006).

    Article  ADS  Google Scholar 

  18. A. Nagashima, N. Tejima, and C. Oshima, Phys. Rev. B: Condens. Matter 50, 17487 (1994).

    ADS  Google Scholar 

  19. C. Oshima and A. Nagashima, J. Phys.: Condens. Matter 9, 1 (1997).

    Article  ADS  Google Scholar 

  20. A. M. Shikin, D. Farias, and K.-H. Rieder, Europhys. Lett. 44, 44 (1998).

    Article  ADS  Google Scholar 

  21. D. Farias, A. M. Shikin, K.-H. Rieder, and Yu. S. Dedkov, J. Phys.: Condens. Matter 11, 8453 (1999).

    Article  ADS  Google Scholar 

  22. A. M. Shikin, D. Farias, V. K. Adamchuk, and K. H. Rieder, Surf. Sci. 424, 155 (1999).

    Article  ADS  Google Scholar 

  23. D. Farias, A. M. Shikin, K.-H. Rieder, V. K. Adamchuk, T. Tanaka, and C. Oshima, Surf. Sci. 454–456, 437 (2000).

    Article  Google Scholar 

  24. A. M. Shikin, G. V. Prudnikova, V. K. Adamchuk, F. Moresco, and K.-H. Rieder, Phys. Rev. B: Condens. Matter 62, 13202 (2000).

    ADS  Google Scholar 

  25. Yu. S. Dedkov, A. M. Shikin, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, A. Bauer, and G. Kaindl, Phys. Rev. B: Condens. Matter 64, 035405 (2001).

    ADS  Google Scholar 

  26. A. G. Starodubov, M. A. Medvetskiĭ, A. M. Shikin, and V. K. Adamchuk, Fiz. Tverd. Tela (St. Petersburg) 46(7), 1300 (2004) [Phys. Solid State 46 (7), 1340 (2004)].

    Google Scholar 

  27. J. C. Hamilton and J. M. Blakely, Surf. Sci. 91, 199 (1980).

    Article  ADS  Google Scholar 

  28. K. Kobajashi and M. Tsukada, Phys. Rev. B: Condens. Matter 49, 7660 (1994).

    ADS  Google Scholar 

  29. D. Usachov, A. M. Dobrotvorskii, A. Varykhalov, O. Rader, W. Gudat, A. M. Shikin, and V. K. Adamchuk, Phys. Rev. B: Condens. Matter 78, 085403 (2008).

    ADS  Google Scholar 

  30. A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Bismas, E. Veskovo, A. Rybkin, D. Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).

    Article  ADS  Google Scholar 

  31. S. L. Molodtsov, C. Laubschat, M. Richter, Th. Gantz, and A. M. Shikin, Phys. Rev. B: Condens. Matter 53, 16621 (1996).

    ADS  Google Scholar 

  32. A. M. Shikin, G. Prudnikova, V. K. Adamchuk, S. L. Molodtsov, Th. Gantz, and C. Laubschat, Phys. Low-Dimens. Struct., No. 7, 79 (1997).

  33. S. Siebentritt, R. Pues, K.-H. Rieder, and A. M. Shikin, Phys. Rev. B: Condens. Matter 55, 7927 (1997).

    ADS  Google Scholar 

  34. S. Siebentritt, R. Pues, K.-H. Rieder, and A. M. Shikin, Surf. Rev. Lett. 5, 427 (1998).

    Article  Google Scholar 

  35. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shikin.

Additional information

Original Russian Text © A.M. Shikin, V.K. Adamchuk, K.-H. Rieder, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 11, pp. 2251–2260.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shikin, A.M., Adamchuk, V.K. & Rieder, K.H. Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 51, 2390–2400 (2009). https://doi.org/10.1134/S1063783409110316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409110316

PACS numbers

Navigation