Skip to main content
Log in

Kinetics of formation of vacancy microvoids and interstitial dislocation loops in dislocation-free silicon single crystals

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The formation of vacancy microvoids and A-microdefects has been calculated according to the model of point defect dynamics in the absence of recombination of intrinsic point defects at high temperatures. It has been assumed that this solution is possible in the case where the precipitation of impurities begins in the vicinity of the crystallization front. It has been demonstrated that the formation of vacancy microvoids has a homogeneous nature and that the interstitial dislocation loops are predominantly formed through the deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Talanin, Simulation of the Defect Structure of Dislocation-Free Silicon Single Crystals and Their Properties (ZIGMU, Zaporozh’e, Ukraine, 2007) [in Russian].

    Google Scholar 

  2. V. I. Talanin and I. E. Talanin, in New Research on Semiconductors, Ed. by T. B. Elliot (Nova Sci., New York, 2006), p. 31.

    Google Scholar 

  3. V. V. Voronkov, J. Cryst. Growth 59, 625 (1982).

    Article  ADS  Google Scholar 

  4. M. S. Kulkarni, J. Cryst. Growth 303, 438 (2007).

    Article  ADS  Google Scholar 

  5. T. Sinno and R. A. Brown, J. Electrochem. Soc. 146, 2300 (1999).

    Article  Google Scholar 

  6. E. Dornberger, W. von Ammon, J. Virbulis, B. Hanna, and T. Sinno, J. Cryst. Growth 230, 291 (2001).

    Article  ADS  Google Scholar 

  7. K. Nakamura, T. Saishoji, and J. Tomioka, J. Cryst. Growth 237–239, 1678 (2002).

    Article  Google Scholar 

  8. M. S. Kulkarni, V. V. Voronkov, and R. Falster, J. Electrochem. Soc. 151, G663 (2004).

    Article  Google Scholar 

  9. M. S. Kulkarni, Ind. Eng. Chem. Res. 44, 6246 (2005).

    Article  Google Scholar 

  10. V. V. Voronkov and R. Falster, J. Appl. Phys. 91, 5802 (2002).

    Article  ADS  Google Scholar 

  11. T. Sinno, R. A. Brown, W. von Ammon, and E. Dornberger, J. Electrochem. Soc. 145, 302 (1998).

    Article  Google Scholar 

  12. K. Nakamura, T. Saishoji, T. Kubota, T. Iida, Y. Shimanuki, T. Kotooka, and J. Tomioka, J. Cryst. Growth 180, 61 (1997).

    Article  ADS  Google Scholar 

  13. Z. Wang and R. A. Brown, J. Cryst. Growth 231, 442 (2001).

    Article  ADS  Google Scholar 

  14. R. A. Brown, Z. Wang, and T. Mori, J. Cryst. Growth 225, 97 (2001).

    Article  ADS  Google Scholar 

  15. V. I. Talanin and I. E. Talanin, Fiz. Tverd. Tela (St. Petersburg) 49(3), 450 (2007) [Phys. Solid State 49 (3), 467 (2007)].

    Google Scholar 

  16. V. I. Talanin, I. E. Talanin, and A. A. Voronin, Can. J. Phys. 85, 1459 (2007).

    Article  ADS  Google Scholar 

  17. M. Itsumi, J. Cryst. Growth 237–239, 1773 (2002).

    Article  Google Scholar 

  18. Y. Yanase, H. Nishihata, T. Ochiai, and H. Tsuya, Jpn. J. Appl. Phys. 37(1), 1 (1998).

    Article  ADS  Google Scholar 

  19. T. Ueki, M. Itsumi, T. Takeda, K. Yoshida, A. Takaoka, and S. Nakajima, Jpn. J. Appl. Phys. 37, L771 (1998).

    Article  ADS  Google Scholar 

  20. V. I. Talanin, Izv. Vyssh. Uchebn. Zaved., Mater. Élektron. Tekh., No. 4, 27 (2007).

  21. T. Ueki, M. Itsumi, and T. Takeda, Jpn. J. Appl. Phys. 38, 5695 (1999).

    Article  ADS  Google Scholar 

  22. V. I. Talanin, I. E. Talanin, S. A. Koryagin, and M. Yu. Semikina, Semicond. Phys., Quantum Electron. Optoelectron. 9, 77 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Talanin.

Additional information

Original Russian Text © V.I. Talanin, I.E. Talanin, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 9, pp. 1751–1757.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talanin, V.I., Talanin, I.E. Kinetics of formation of vacancy microvoids and interstitial dislocation loops in dislocation-free silicon single crystals. Phys. Solid State 52, 1880–1886 (2010). https://doi.org/10.1134/S1063783410090155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410090155

Keywords

Navigation