Skip to main content
Log in

Thermally stimulated recombination processes and luminescence in Li6(Y,Gd,Eu)(BO3)3 crystals

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Ogorodnikov, V. A. Pustovarov, S. I. Omel’kov, A. V. Tolmachev, and R. P. Yavetskii, Opt. Spektrosc. 102(1), 66 (2007) [Opt. Spectrosc. 102 (1), 60 (2007)].

    ADS  Google Scholar 

  2. I. N. Ogorodnikov, V. A. Pustovarov, A. V. Tolmachev, and R. P. Yavetskii, Fiz. Tverd. Tela (St. Petersburg) 50(9), 1620 (2008) [Phys. Solid State 50 (9), 1684 (2008)].

    Google Scholar 

  3. J. B. Czirr, G. M. MacGillivray, R. R. MavGillivray, and P. J. Deddon, Nucl. Instrum. Methods Phys. Res., Sect. A 424, 15 (1999).

    Article  ADS  Google Scholar 

  4. C. T. Garapon, B. Jacquier, J. P. Chaminade, and C. Fouassier, J. Lumin. 34, 211 (1985).

    Article  Google Scholar 

  5. C. T. Garapon, B. Jacquier, Y. Salem, and R. Moncorge, J. Phys. Colloq. 46(C7), C7–141 (1985).

    Article  Google Scholar 

  6. M. Buijs, J. I. Vree, and G. Blasse, Chem. Phys. Lett. 137, 381 (1987).

    Article  ADS  Google Scholar 

  7. J. Sablayrolles, V. Jubera, J.-P. Chaminade, I. Manek-Hönninger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, and F. Salin, Opt. Mater. 27, 1681 (2005).

    Article  ADS  Google Scholar 

  8. R. P. Yavetskiy, M. F. Dubovik, A. V. Tolmachev, and V. Tarasov, Phys. Status Solidi C 2, 268 (2005).

    Article  ADS  Google Scholar 

  9. R. P. Yavetskiy, E. F. Dolzhenkova, M. F. Dubovik, T. I. Korshikova, and A. V. Tolmachev, J. Cryst. Growth 276, 485 (2005).

    Article  ADS  Google Scholar 

  10. R. P. Yavetskiy, A. V. Tolmachev, E. F. Dolzhenkova, and V. N. Baumer, J. Alloys Compd. 429, 77 (2007).

    Article  Google Scholar 

  11. I. N. Ogorodnikov, N. E. Poryvai, V. A. Pustovarov, A. V. Tolmachev, R. P. Yavetskii, and V. Yu. Yakovlev, Fiz. Tverd. Tela (St. Petersburg) 51(6), 1097 (2009) [Phys. Solid State 51 (6), 1160 (2009)].

    Google Scholar 

  12. R. P. Yavetskiy and A. V. Tolmachev, Pis’ma Zh. Tekh. Fiz. 30(23), 8 (2004) [Tech. Phys. Lett. 30 (12), 976 (2004)].

    Google Scholar 

  13. R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and J. Hölsä, J. Lumin. 87–89, 1002 (2000).

    Article  Google Scholar 

  14. R. Chen, J. Mater. Sci. 11, 1521 (1976).

    Article  ADS  Google Scholar 

  15. A. R. Lim, J. W. Kim, and C. S. Yoon, J. Appl. Phys. 94, 5095 (2003).

    Article  ADS  Google Scholar 

  16. I. N. Ogorodnikov, L. I. Isaenko, A. V. Kruzhalov, and A. V. Porotnikov, Radiat. Meas. 33, 577 (2001).

    Article  Google Scholar 

  17. G. Blasse, H. S. Kiliaan, and A. de Vries, J. Less-Common Met. 126, 139 (1986).

    Article  Google Scholar 

  18. G. Blasse, C. van den Heuvel, and T. van Dijk, Chem. Phys. Lett. 62, 600 (1979).

    Article  ADS  Google Scholar 

  19. I. N. Ogorodnikov, S. V. Kudyakov, A. Yu. Kuznetsov, V. Yu. Ivanov, A. V. Kruzhalov, V. A. Maslov, and L. A. Ol’khovaya, Pis’ma Zh. Tekh. Fiz. 19(13), 77 (1993) [Tech. Phys. Lett. 19 (7), 431 (1993)].

    Google Scholar 

  20. M. P. Scripsick, X. H. Fang, G. J. Edwards, L. E. Halliburton, and J. K. Tyminski, J. Appl. Phys. 73, 1114 (1993).

    Article  ADS  Google Scholar 

  21. I. N. Ogorodnikov, A. V. Porotnikov, S. V. Kudyakov, and A. V. Kruzhalov, Mater. Sci. Forum 239–241, 337 (1997).

    Article  Google Scholar 

  22. A. V. Porotnikov, I. N. Ogorodnikov, S. V. Kudyakov, A. V. Kruzhalov, and S. L. Votyakov, Fiz. Tverd. Tela (St. Petersburg) 39(8), 1380 (1997) [Phys. Solid State 39 (8), 1224 (1997)].

    Google Scholar 

  23. W. Hong, M. M. Chirila, N. Y. Garces, L. E. Halliburton, D. Lupinski, and P. Villeval, Phys. Rev. B: Condens. Matter: Condens. Matter 68, 094 111 (9 pages) (2003).

    Google Scholar 

  24. A. Yu. Kuznetsov, A. B. Sobolev, I. N. Ogorodnikov, and A. V. Kruzhalov, Fiz. Tverd. Tela (St. Petersburg) 36(12), 3530 (1994) [Phys. Solid State 36 (12), 1876 (1994)].

    Google Scholar 

  25. I. N. Ogorodnikov, V. Yu. Ivanov, A. A. Maslakov, A. Yu. Kuznetsov, and V. A. Maslov, Pis’ma Zh. Tekh. Fiz. 19(16), 42 (1993) [Tech. Phys. Lett. 19 (8), 518 (1993)].

    Google Scholar 

  26. I. N. Ogorodnikov, V. Yu. Ivanov, A. Yu. Kuznetsov, A. V. Kruzhalov, V. A. Maslov, and L. A. Ol’khovaya, Pis’ma Zh. Tekh. Fiz. 19(2), 14 (1993) [Tech. Phys. Lett. 19 (1), 42 (1993)].

    Google Scholar 

  27. I. N. Ogorodnikov, A. Yu. Kuznetsov, and A. V. Porotnikov, Pis’ma Zh. Tekh. Fiz. 20(13), 66 (1994) [Tech. Phys. Lett. 20 (7), 549 (1994)].

    Google Scholar 

  28. I. N. Ogorodnikov, V. Yu. Ivanov, A. Yu. Kuznetsov, A. V. Kruzhalov, and V. A. Maslov, Pis’ma Zh. Tekh. Fiz. 19(11), 1 (1993) [Tech. Phys. Lett. 19 (6), 325 (1993)].

    Google Scholar 

  29. I. N. Ogorodnikov, E. A. Radzhabov, L. I. Isaenko, and A. V. Kruzhalov, Fiz. Tverd. Tela (St. Petersburg) 41(2), 223 (1999) [Phys. Solid State 41 (2), 197 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Ogorodnikov.

Additional information

Original Russian Text © I.N. Ogorodnikov, N.E. Poryvay, I.N. Sedunova, A.V. Tolmachev, R.P. Yavetskiy, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 2, pp. 247–253.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, I.N., Poryvay, N.E., Sedunova, I.N. et al. Thermally stimulated recombination processes and luminescence in Li6(Y,Gd,Eu)(BO3)3 crystals. Phys. Solid State 53, 263–270 (2011). https://doi.org/10.1134/S1063783411020211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411020211

Keywords

Navigation