Skip to main content
Log in

Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of elastic strain on the mechanical and physical properties of graphene has been intensively studied in recent years. Using the molecular dynamics method, a surface has been built in the three-dimensional space of components of the plane strain tensor bounds the region of the structural stability of a flat graphene sheet without considering thermal vibrations and the influence of boundary conditions. The velocities of sound and the densities of phonon states in graphene subjected to an elastic strain within the region of the structural stability have been calculated. It has been shown that one of the velocities of sound becomes zero near the stability boundary of a flat graphene sheet. During biaxial tension of graphene, there is no gap in its phonon spectrum; however, it forms under uniaxial tension along the zigzag or armchair directions and also under combined tensile and compressive strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington) 321, 385 (2008).

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  3. M. B. Belonenko, N. G. Lebedev, N. N. Yanyushkina, and M. M. Shakirzyanov, Phys. Solid State 52(9), 1952 (2010).

    Article  ADS  Google Scholar 

  4. D. V. Zav’yalov, V. I. Konchenkov, and S. V. Kryuchkov, Phys. Solid State 51(10), 2157 (2009).

    Article  ADS  Google Scholar 

  5. J. I. Inoue, Phys. Rev. B: Condens. Matter 83, 205404 (2011).

    Article  ADS  Google Scholar 

  6. V. M. Apalkov and T. Chakraborty, Phys. Rev. B: Condens. Matter 84, 033408 (2011).

    Article  ADS  Google Scholar 

  7. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys.-Usp. 54(3), 227 (2011).

    Article  ADS  Google Scholar 

  8. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  9. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature (London) 448, 571 (2007).

    Article  ADS  Google Scholar 

  10. G. E. Froudakis, Mater. Today 14, 324 (2011).

    Article  Google Scholar 

  11. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London) 442, 282 (2006).

    Article  ADS  Google Scholar 

  12. T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).

    Article  Google Scholar 

  13. X. Li, K. Maute, M. L. Dunn, and R. Yang, Phys. Rev. B: Condens. Matter 81, 245318 (2010).

    Article  ADS  Google Scholar 

  14. F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B: Condens. Matter 81, 035411 (2010).

    Article  ADS  Google Scholar 

  15. O. E. Glukhova and A. S. Kolesnikova, Phys. Solid State 53(9), 1963 (2011).

    Article  ADS  Google Scholar 

  16. M. J. Majid and S. S. Savinskii, Tech. Phys. Lett. 37(6), 519 (2011).

    Article  ADS  Google Scholar 

  17. F. Liu, P. Ming, and J. Li, Phys. Rev. B: Condens. Matter 76, 064120 (2007).

    Article  ADS  Google Scholar 

  18. X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Phys. Rev. B: Condens. Matter 80, 205407 (2009).

    Article  ADS  Google Scholar 

  19. S. Yu. Davydov, Phys. Solid State 53(3), 665 (2011).

    Article  ADS  Google Scholar 

  20. S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar’, JETP Lett. 93(10), 571 (2011).

    Article  ADS  Google Scholar 

  21. S. S. Moliver, R. R. Zimagullov, and A. L. Semenov, Tech. Phys. Lett. 37(7), 678 (2011).

    Article  Google Scholar 

  22. O. V. Yazyev and S. G. Louie, Phys. Rev. B: Condens. Matter 81, 195420 (2010).

    Article  ADS  Google Scholar 

  23. D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).

    Article  ADS  Google Scholar 

  24. S. Maruyama, Y. Igarashi, Y. Taniguchi, and J. Shiomi, J. Therm. Sci. Technol. (Tokyo) 1, 138 (2006).

    Article  Google Scholar 

  25. A. V. Savin and O. I. Savina, Phys. Solid State 46(2), 383 (2004).

    Article  ADS  Google Scholar 

  26. M. Neek-Amal and F. M. Peeters, Phys. Rev. B: Condens. Matter 82, 085432 (2010).

    Article  ADS  Google Scholar 

  27. J.-W. Jiang, J.-S. Wang, and B. Li, Phys. Rev. B: Condens. Matter 80, 113405 (2009).

    Article  ADS  Google Scholar 

  28. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B: Condens. Matter 82, 195422 (2010).

    Article  ADS  Google Scholar 

  29. A. V. Savin and Yu. S. Kivshar, Eur. Phys. Lett. 89, 46001 (2010).

    Article  ADS  Google Scholar 

  30. A. M. Krivtsov and N. F. Morozov, Phys. Solid State 44(12), 2260 (2002).

    Article  ADS  Google Scholar 

  31. J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, Phys. Rev. Lett. 92, 075501 (2004).

    Article  ADS  Google Scholar 

  32. M. Mohr, J. Maultzsch, E. Dobardzic, S. Reich, I. Milosevic, M. Damnjanovic, A. Bosak, M. Krisch, and C. Thomsen, Phys. Rev. B: Condens. Matter 76, 035439 (2007).

    Article  ADS  Google Scholar 

  33. A. Gruneis, R. Saito, T. Kimura, L. G. Cancado, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dres- selhaus, and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter 65, 155405 (2002).

    Article  ADS  Google Scholar 

  34. L. J. Karssemeijer and A. Fasolino, Surf. Sci. 605, 1611 (2011).

    Article  ADS  Google Scholar 

  35. Y. Gao and P. Hao, Physica E (Amsterdam) 41, 1561 (2009).

    Article  ADS  Google Scholar 

  36. H. Bu, Y. Chen, M. Zou, H. Yi, K. Bi, and Z. Ni, Phys. Lett. A 373, 3359 (2009).

    Article  ADS  Google Scholar 

  37. A. Bosak, M. Krisch, M. Mohr, J. Maultzsch, and C. Thomsen, Phys. Rev. B: Condens. Matter 75, 153408 (2007).

    Article  ADS  Google Scholar 

  38. R. Gillen, M. Mohr, and J. Maultzsch, Phys. Status Solidi B 247, 2941 (2010).

    Article  Google Scholar 

  39. S. Flach and A. V. Gorbach, Phys. Rep. 467, 1 (2008).

    Article  ADS  Google Scholar 

  40. S. V. Dmitriev and L. Z. Khadeeva, Phys. Solid State 53(7), 1425 (2011).

    Article  ADS  Google Scholar 

  41. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B: Condens. Matter 81, 214306 (2010).

    Article  ADS  Google Scholar 

  42. S. V. Dmitriev and Yu. A. Baimova, Tech. Phys. Lett. 37(5), 451 (2011).

    Article  ADS  Google Scholar 

  43. S. V. Dmitriev, Pis’ma Mater. 1, 78 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Baimova.

Additional information

Original Russian Text © Yu.A. Baimova, S.V. Dmitriev, A.V. Savin, Yu.S. Kivshar’, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 4, pp. 813–820.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baimova, Y.A., Dmitriev, S.V., Savin, A.V. et al. Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet. Phys. Solid State 54, 866–874 (2012). https://doi.org/10.1134/S1063783412040026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412040026

Keywords

Navigation