Skip to main content
Log in

Atomistic simulation of the motion of dislocations in metals under phonon drag conditions

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The mobility of dislocations in the over-barrier motion in different metals (Al, Cu, Fe, Mo) has been investigated using the molecular dynamics method. The phonon drag coefficients have been calculated as a function of the pressure and temperature. The results obtained are in good agreement with the experimental data and theoretical estimates. For face-centered cubic metals, the main mechanism of dislocation drag is the phonon scattering. For body-centered cubic metals, the contribution of the radiation friction becomes significant at room temperature. It has been found that there is a correlation between the temperature dependences of the phonon drag coefficient and the lattice constant. The dependences of the phonon drag coefficient on the pressure have been calculated. In contrast to the other metals, iron is characterized by a sharp increase in the phonon drag coefficient with an increase in the pressure at low temperatures due to the α-∈ phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orovan, Z. Phys. 89, 605 (1934).

    Article  ADS  Google Scholar 

  2. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  3. A. Hikata. R. A. Johnson, and C. Elbaum, Phys. Rev. B: Solid State 2(12), 4856 (1970).

    Article  ADS  Google Scholar 

  4. A. M. Petchenko and G. A. Petchenko, Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved., No. 6, 46 (2007).

    Google Scholar 

  5. J. A. Gorman, D. S. Wood, and T. Vreeland, Jr., Phys. Rev. B: Condens. Matter 40, 833 (1969).

    Google Scholar 

  6. G. I. Kapel’, V. E. Fortov, and S. V. Razorenov, Phys.—Usp. 50(8), 771 (2007).

    Article  ADS  Google Scholar 

  7. T. Suzuki, H. Yosinaga, and S. Takeuti, Dislocation Dynamics and Plasticity (Syokabo, Tokyo, 1986; Mir, Moscow, 1989).

    Google Scholar 

  8. G. Leibfried, Z. Phys. 127, 344 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. A. D. Brailsford, J. Appl. Phys. 43, 1380 (1972).

    Article  ADS  Google Scholar 

  10. V. I. Al’shits and V. L. Indenbom, Sov. Phys.—Usp. 18(1), 1 (1975).

    Article  ADS  Google Scholar 

  11. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 1960; Inostrannaya Literatura, Moscow, 1962).

    MATH  Google Scholar 

  12. V. I. Al’shits, Sov. Phys. Solid State 11(8), 1947 (1969).

    Google Scholar 

  13. M. S. Daw, S. M. Foiles, and M. I. Baskes, Mater. Sci. Rep. 9, 251 (1992).

    Article  Google Scholar 

  14. Yu. N. Osetsky and D. J. Bacon, Modell. Simul. Mater. Sci. Eng. 11(4), 427 (2003).

    Article  ADS  Google Scholar 

  15. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Dokl. Phys. 53(6), 287 (2008).

    Article  ADS  Google Scholar 

  16. V. S. Krasnikov, A. Yu. Kuksin, A. E. Mayer, and A. V. Yanilkin, Phys. Solid State 52(7), 1386 (2010).

    Article  ADS  Google Scholar 

  17. V. S. Kracnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  Google Scholar 

  18. N. R. Barton, J. V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park, B. A. Remington, and R. T. Olson, J. Appl. Phys. 109, 073501 (2011).

    Article  ADS  Google Scholar 

  19. J. Changa, W. Cai, V. V. Bulatov, and S. Yip, Mater. Sci. Eng., A 309, 160 (2001).

    Article  Google Scholar 

  20. X.-Y. Liu, Xu Wei, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).

    Article  ADS  Google Scholar 

  21. X.-Y. Liu, F. Ercolessi, and J. B. Adams, Modell. Simul. Mater. Sci. Eng. 12, 665 (2004).

    Article  ADS  Google Scholar 

  22. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B: Condens. Matter 59, 3393 (1999).

    Article  ADS  Google Scholar 

  23. J. M. Winey, A. Kubota, and Y. M. Gupta, Modell. Simul. Mater. Sci. Eng. 17, 055004 (2009).

    Article  ADS  Google Scholar 

  24. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Vonter, and J. D. Kress, Phys. Rev. B: Condens. Matter 63, 224106 (2001).

    Article  ADS  Google Scholar 

  25. Finnis Sinclair, Philos. Mag. A 56, 15 (1987).

    Google Scholar 

  26. P. M. Derlet, D. Nguyen-Manh, and S. L. Doudarev, Phys. Rev. B: Condens. Matter 76, 054107 (2007).

    Article  ADS  Google Scholar 

  27. S. V. Starikov, Z. Insepov, J. Rest, A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, Phys. Rev. B: Condens. Matter 84, 104109 (2011).

    Article  ADS  Google Scholar 

  28. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Philos. Mag. A 83, 3977 (2003).

    Article  ADS  Google Scholar 

  29. S. G. Srinivasan, X. Z. Liao, M. I. Baskes, R. J. McCabe, Y. H. Zhao, and Y. T. Zhu, Phys. Rev. Lett. 94, 125502 (2005).

    Article  ADS  Google Scholar 

  30. D. Faken and H. Jónsson, Comput. Mater. Sci. 2(2), 279 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yanilkin.

Additional information

Original Russian Text © A.Yu. Kuksin, A.V. Yanilkin, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 5, pp. 931–939.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuksin, A.Y., Yanilkin, A.V. Atomistic simulation of the motion of dislocations in metals under phonon drag conditions. Phys. Solid State 55, 1010–1019 (2013). https://doi.org/10.1134/S1063783413050193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413050193

Keywords

Navigation