Skip to main content
Log in

Specific features of the charge and mass transfer in a silver-intercalated hafnium diselenide

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The specific features of the charge transfer in intercalated samples of Ag x HfSe2 have been studied for the first time by alternating current (ac) impedance spectroscopy. It has been found that relaxation processes in an ac field are accelerated with increasing silver content in the samples. The complex conductivity (Y) shows a frequency dispersion described by power law Y ∼ ω s , which is characteristic of the hopping conductivity mechanism. The Ag x HfSe2 compounds demonstrate shorter relaxation times as compared to those observed in hafnium diselenide intercalated with copper atoms, and this fact indicates that the charge carrier mobility in the silver-intercalated compounds is higher. The possibility of silver ion transfer in Ag x HfSe2 is confirmed by the measurements performed by the method of electrochemical cell emf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Inoue, H. P. Hughes, and A. D. Yoffe, Adv. Phys. 38, 565 (1989).

    Article  ADS  Google Scholar 

  2. S. S. P. Parkin and R. H. Friend, Philos. Mag. B 41, 65 (1980).

    Article  ADS  Google Scholar 

  3. S. S. P. Parkin and R. H. Friend, Philos. Mag. B 41, 95 (1980).

    Article  ADS  Google Scholar 

  4. N. V. Baranov, K. Inoue, V. I. Maksimov, A. S. Ovchinnikov, V. G. Pleschov, A. Podlesnyak, A. N. Titov, and N. V. Toporova, J. Phys.: Condens. Matter. 16, 9243 (2004).

    Article  ADS  Google Scholar 

  5. Y. Tazuke, T. Miyashita, H. Nakano, and R. Sasaki, Phys. Status Solidi C 3, 2787 (2006).

    Article  ADS  Google Scholar 

  6. N. V. Selezneva, N. V. Baranov, V. G. Pleshchev, N. V. Mushnikov, and V. I. Maksimov, Phys. Solid State 53(2), 329 (2011).

    Article  ADS  Google Scholar 

  7. M. S. Whittingham and F. R. Gamble, Mater. Res. Bull. 10, 363 (1975).

    Article  Google Scholar 

  8. J. Rouxel, L. Trichet, P. Chevalier, P. Colombet, and O. F. Ghaloun, J. Solid State Chem. 29, 311 (1978).

    Article  ADS  Google Scholar 

  9. A. H. Reshak, J. Phys. Chem. A 113, 1635 (2009).

    Article  Google Scholar 

  10. L. S. Krasavin, M. V. Spitsyn, and A. N. Titov, Phys. Solid State 39(1), 52 (1997).

    Article  ADS  Google Scholar 

  11. A. N. Titov, Z. A. Yagafarova, and N. N. Bikkulova, Phys. Solid State 45(11), 2064 (2003)

    Article  ADS  Google Scholar 

  12. A. N. Titov, Phys. Solid State 51(4), 714 (2009).

    Article  ADS  Google Scholar 

  13. H. Wada, O. Amiel, and A. Sato, J. Alloys Compd. 219, 55 (1995).

    Article  Google Scholar 

  14. V. G. Pleshchev, N. V. Selezneva, and N. V. Baranov, Phys. Solid State 55(1), 21 (2013).

    Article  ADS  Google Scholar 

  15. I. Jokota, J. Phys. Soc. Jpn. 16, 2213 (1961).

    Article  ADS  Google Scholar 

  16. S. Miyatani, J. Phys. Soc. Jpn. 10, 786 (1955).

    Article  ADS  Google Scholar 

  17. Yu. Ya. Gurevich, Solid Electrolytes (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  18. MirHasan Yu. Seyidov, R. A. Suleymanov, Y. Bakis, and F. Salehli, J. Appl. Phys. 108, 074114 (2010).

    Article  ADS  Google Scholar 

  19. Yu. M. Poplavko, L. P. Pereverzeva, and I. P. Raevskii, Physics of Active Dielectrics (Southern Federal University, Rostov-on-Don, 2009) [in Russian].

    Google Scholar 

  20. V. G. Pleshchev, N. V. Baranov, N. V. Mel’nikova, and N. V. Selezneva, Phys. Solid State 54(7), 1348 (2012).

    Article  ADS  Google Scholar 

  21. P. Lunkenheimer and A. Loidl, Phys. Rev. Lett. 91, 207601–1 (2003).

    Article  ADS  Google Scholar 

  22. A. S. Nowick, A. V. Vaysleyb, and I. Kuskovsky, Phys. Rev. B: Condens. Matter 58, 8398 (1998).

    Article  ADS  Google Scholar 

  23. Wei Li and R. W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006).

    Article  ADS  Google Scholar 

  24. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979; Mir, Moscow, 1982), Vol. 1.

    Google Scholar 

  25. S. Kallel, A. Nasri, N. Kallel, H. Rahmouni, O. Pen-, K. Khirouni, and M. Oumezzine, Physica B (Amsterdam) 406, 2172 (2011).

    ADS  Google Scholar 

  26. C. Wagner, Z. Electrochem. B 40(7A), 364 (1934).

    Google Scholar 

  27. C. Wagner, Thermodynamics of Alloys (Addison-Wesley, New York, 1952; GNTI, Moscow, 1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pleshchev.

Additional information

Original Russian Text © V.G. Pleshchev, N.V. Selezneva, N.V. Baranov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 7, pp. 1281–1284.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleshchev, V.G., Selezneva, N.V. & Baranov, N.V. Specific features of the charge and mass transfer in a silver-intercalated hafnium diselenide. Phys. Solid State 55, 1377–1380 (2013). https://doi.org/10.1134/S1063783413070238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413070238

Keywords

Navigation