Skip to main content
Log in

Kinetic stability of octagraphene

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The kinetic stability of octagraphene, i.e., a carbon atom monolayer in which the C-C bonds form octahedra and squares, has been studied by computer simulation. From the analysis of the molecular dynamics data and hypersurface of the potential energy of this metastable quasi-two-dimensional system, the main channel of its decomposition has been determined, the energy barrier height preventing the decomposition and the frequency factor in the Arrhenius formula for the decomposition rate have been found. It has been shown that the defects formed in octagraphene are not localized but induce avalanche-like damage of the whole structure. Therefore, despite a relatively low rate of defect formation, the lifetime of a macroscopic octagraphene sample at room temperature is insufficient for its practical use, although the mesoscopic samples can find their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. V. I. Kasatochkin, A. M. Sladkov, Yu. P. Kudryavtsev, N. M. Popov, and V. V. Korshak, Dokl. Akad. Nauk SSSR 177, 358 (1967).

    Google Scholar 

  3. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  5. M. M. Haley, Pure Appl. Chem. 80, 519 (2008).

    Article  Google Scholar 

  6. G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li, and D. B. Zhu, Chem. Commun. 46, 3256 (2010).

    Article  Google Scholar 

  7. R. H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).

    Article  ADS  Google Scholar 

  8. N. Narita, S. Nagai, S. Suzuki, and K. Nakao, Phys. Rev. B: Condens. Matter 58, 11009 (1998).

    Article  ADS  Google Scholar 

  9. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  10. L. A. Openov, A. I. Podlivaev, and M. M. Maslov, Phys. Lett. A 376, 3146 (2012).

    Article  ADS  Google Scholar 

  11. I. V. Davydov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 47(4), 778 (2005).

    Article  ADS  Google Scholar 

  12. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53(12), 2532 (2011).

    Article  ADS  Google Scholar 

  13. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  14. A. I. Podlivaev, K. P. Katin, D. A. Lobanov, and L. A. Openov, Phys. Solid State 53(1), 215 (2011).

    Article  ADS  Google Scholar 

  15. M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51(3), 645 (2009).

    Article  ADS  Google Scholar 

  16. L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36(1), 31 (2010).

    Article  ADS  Google Scholar 

  17. A. I. Podlivaev and L. A. Openov, Semiconductors 45(7), 958 (2011).

    Article  ADS  Google Scholar 

  18. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  ADS  Google Scholar 

  19. V. F. Elesin, A. I. Podlivaev, and L. A. Openov, Phys. Low-Dimens. Struct. 11/12, 91 (2000).

    Google Scholar 

  20. A. I. Podlivaev and L. A. Openov, Phys. Solid State 48(11), 2226 (2006).

    Article  ADS  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, JETP Lett. 84(2), 68 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Openov.

Additional information

Original Russian Text © A.I. Podlivaev, L.A. Openov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 12, pp. 2464–2467.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podlivaev, A.I., Openov, L.A. Kinetic stability of octagraphene. Phys. Solid State 55, 2592–2595 (2013). https://doi.org/10.1134/S1063783413120299

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413120299

Keywords

Navigation