Skip to main content
Log in

On the problem of the consistency of the high-temperature precipitation model with the classical nucleation theory

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The adequacy of the model of high-temperature precipitation in dislocation-free silicon single crystals to the classical theory of nucleation and growth of second-phase particles in solids has been considered. It has been shown that the introduction and consideration of thermal conditions of crystal growth in the initial equations of the classical nucleation theory make it possible to explain the precipitation processes occurring in the high-temperature range and thus extend the theoretical basis of the application of the classical nucleation theory. According to the model of high-temperature precipitation, the smallest critical radius of oxygen and carbon precipitates is observed in the vicinity of the crystallization front. Cooling of the crystal is accompanied by the growth and coalescence of precipitates. During heat treatments, the nucleation of precipitates starts at low temperatures, whereas the growth and coalescence of precipitates occur with an increase in the temperature. It has been assumed that the high-temperature precipitation of impurities can determine the overall kinetics of defect formation in other dislocation-free single crystals of semiconductors and metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Talanin and I. E. Talanin, in New Research on Semiconductors, Ed. by T. B. Elliot (Nova Science, New York, 2006), p. 31.

  2. V. V. Voronkov, J. Cryst. Growth 59, 625 (1982).

    Article  ADS  Google Scholar 

  3. V. I. Talanin and I. E. Talanin, Diffus. Defect Data, Pt. A 230–232, 177 (2004).

    Article  Google Scholar 

  4. V. V. Voronkov, B. Dai, and M. S. Kulkarni, Compr. Semicond. Sci. Technol. 3, 81 (2011).

    Article  Google Scholar 

  5. M. S. Kulkarni, V. V. Voronkov, and R. Falster, J. Electrochem. Soc. 151, G663 (2004).

    Article  Google Scholar 

  6. E. Haimi, in Handbook of Silicon Based MEMS Materials and Technologies, Ed. by V. Lindroos, M. Tilli, A. Lehto, and T. Motooka (Elsevier, Oxford, 2010), p. 59.

  7. M. S. Kulkarni, Ind. Eng. Chem. Res. 44, 6246 (2005).

    Article  Google Scholar 

  8. V. I. Talanin and I. E. Talanin, Phys. Solid State 52(10), 2063 (2010).

    Article  ADS  Google Scholar 

  9. V. I. Talanin and I. E. Talanin, Phys. Solid State 53(1), 119 (2011).

    Article  ADS  Google Scholar 

  10. V. I. Talanin and I. E. Talanin, Phys. Solid State 52(9), 1880 (2010).

    Article  ADS  Google Scholar 

  11. V. I. Talanin and I. E. Talanin, in Advances in Crystallization Processes, Ed. by Y. Mastai (INTECH, Rijeka, Croatia, 2012), p. 611.

  12. J. W. Cristian, The Theory of Transformations in Metals and Alloys (Pergamon, London, 1965).

    Google Scholar 

  13. J. Vanhellemont and C. Claeys, J. Appl. Phys. 62(9), 3960 (1987).

    Article  ADS  Google Scholar 

  14. M. S. Kulkarni, J. Cryst. Growth 303, 438 (2007).

    Article  ADS  Google Scholar 

  15. M. S. Kulkarni, J. Cryst. Growth 310, 324 (2008).

    Article  ADS  Google Scholar 

  16. V. I. Talanin and I. E. Talanin, Phys. Status Solidi A 200, 297 (2003).

    Article  ADS  Google Scholar 

  17. A. A. Sitnikova, L. M. Sorokin, I. E. Talanin, E. G. Sheikhet, and E. S. Falkevich, Phys. Status Solidi A 81, 433 (1984).

    Article  ADS  Google Scholar 

  18. A. A. Sitnikova, L. M. Sorokin, I. E. Talanin, E. G. Sheikhet, and E. S. Falkevich, Phys. Status Solidi A 90, K31 (1985).

    Article  ADS  Google Scholar 

  19. A. Bourret, J. Thibault-Desseaux, and D. N. Seidman, J. Appl. Phys. 55, 825 (1984).

    Article  ADS  Google Scholar 

  20. V. T. Bublik and N. M. Zotov, Crystallogr. Rep. 44(4), 635 (1999).

    ADS  Google Scholar 

  21. M. Itsumi, J. Cryst. Growth 237–239, 1773 (2002).

    Article  Google Scholar 

  22. V. I. Talanin, I. E. Talanin, and A. A. Voronin, Can. J. Phys. 85, 1459 (2007).

    Article  ADS  Google Scholar 

  23. V. I. Talanin and I. E. Talanin, Open Condens. Matter Phys. J. 4, 8 (2011).

    Article  ADS  Google Scholar 

  24. V. I. Talanin and I. E. Talanin, J. Cryst. Growth 346, 45 (2012).

    Article  ADS  Google Scholar 

  25. H. Eyring, S. H. Lin, and S. M. Lin, Basic Chemical Kinetics (Wiley, New York, 1980; Mir, Moscow, 1983).

    Google Scholar 

  26. S. A. Kukushkin and A. V. Osipov, J. Appl. Phys. 113, 024909 (2013).

    Article  ADS  Google Scholar 

  27. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 56(4), 792 (2014).

    Article  ADS  Google Scholar 

  28. V. I. Talanin and I. E. Talanin, Phys. Solid State 49(3), 467 (2007).

    Article  ADS  Google Scholar 

  29. V. I. Talanin and I. E. Talanin, Phys. Solid State 55(2), 282 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Talanin.

Additional information

Original Russian Text © V.I. Talanin, I.E. Talanin, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 10, pp. 1978–1984.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talanin, V.I., Talanin, I.E. On the problem of the consistency of the high-temperature precipitation model with the classical nucleation theory. Phys. Solid State 56, 2043–2049 (2014). https://doi.org/10.1134/S1063783414100291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414100291

Keywords

Navigation