Skip to main content
Log in

Influence of heterovalent substitution in the titanium sublattice on the electrochemical intercalation of lithium in M y Ti1–y Se2 (M = Cr, V))

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of heterovalent substitutions Ti–V and Ti–Cr on the electrochemical intercalation of lithium into titanium diselenide has been investigated. It has been found that both types of doping insignificantly decrease the electromotive force (emf) with respect to metallic lithium. The substitution of vanadium for titanium provides a significant increase in the intercalation capacity of the material. The effect has been explained by the decrease in the solubility of lithium, which prevents the formation of a blocking phase with an extremely high lithium concentration (three atoms per formula unit). The substitution of chromium does not lead to a similar effect, because the decrease in the solubility of lithium is accompanied by an increase in the concentration of superstoichiometric titanium that occupies the lattice sites accessible to the diffusion of lithium in TiSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Whittingham, Prog. Solid State Chem. 12, 41 (1978).

    Article  Google Scholar 

  2. A. Manthiram, in Lithium Batteries: Science and Technology, Ed. by G.-A. Nazri and G. Pistoia (Kluwer, New York, 2009), p. 3.

  3. M. S. Whittingham, Chem. Rev. 104, 4271 (2004).

    Article  Google Scholar 

  4. J. Molenda, Solid State Ionics 175, 203 (2004).

    Article  Google Scholar 

  5. J. Molenda, Solid State Ionics 176, 1687 (2005).

    Article  Google Scholar 

  6. M. S. Wittingham, in Lithium Batteries: Science and Technology, Ed. G.-A. Nazri and G. Pistoia (Kluwer, New York, 2009), p. 85.

  7. M. M. Thackeray, J. O. Thomas, and M. S. Whittingham, MRS Bull. 25, 39 (2000).

    Article  Google Scholar 

  8. J. E. Trevey, C. R. Stoldt, and S.-H. Lee, J. Electrochem. Soc. 158 (12), A1282 (2011).

    Article  Google Scholar 

  9. R. Elazari, G. Salitra, G. Gershinsky, A. Garsuch, A. Panchenko, and D. Aurbach, J. Electrochem. Soc. 159 (9), A1440 (2012).

    Article  Google Scholar 

  10. B. R. Shin, Y. J. Nam, D. Y. Oh, D. H. Kim, J. W. Kim, and Y. S. Jung, Electrochim. Acta 146, 395 (2014).

    Article  Google Scholar 

  11. Y.-S. Su and A. Manthiram, J. Power Sources 270, 101 (2014).

    Article  ADS  Google Scholar 

  12. B. R. Shin, Y. J. Nam, J. W. Kim, Y.-G. Lee, and Y. S. Jung, Sci. Rep. 4, 5572 (2014).

    ADS  Google Scholar 

  13. A. Sakuda, N. Taguchi, T. Takeuchi, H. Kobayashi, H. Sakaebe, K. Tatsumi, and Z. Ogumi, Solid State Ionics 262, 143 (2014).

    Article  Google Scholar 

  14. J. Dahn and R. R. Haering, Mater. Res. Bull. 14, 1259 (1979).

    Article  Google Scholar 

  15. Y. Kim, K.-S. Park, S.-H. Song, J. Han, and J. B. Goodenough, J. Electrochem. Soc. 156 (8), A703 (2009).

    Article  Google Scholar 

  16. J. A. Wilson, Phys. Status Solidi B 86 (11): 11 (1978).

    Article  ADS  Google Scholar 

  17. M. Traum, G. Margaritondo, N. V. Smith, J. E. Rowe, and F. J. Di Salvo, Phys. Rev. B: Solid State 17 (4): 1836 (1978).

    Article  ADS  Google Scholar 

  18. A. N. Titov, A. I. Merentsov, and V. N. Neverov, Izv. Akad. Nauk, Ser. Fiz. 70 (7): 1037 (2006).

    Google Scholar 

  19. V. M. Zhukovskii, O. V. Bushkova, I. E. Animitsa, and B. I. Lirova, R Patent 2136084, Byul. Izobret. 24, 558.

  20. Chemical Sources of Electric Current: A Handbook, Ed. by N. V. Korovin and A. M. Skundin (Moscow Power Engineering Institute, Moscow, 2003) [in Russian].

  21. T. Bredow, P. Heitjans, and M. Wilkening, Phys. Rev. B: Condens. Matter 70, 115111 (2004).

    Article  ADS  Google Scholar 

  22. B. G. Silbernagel and M. S. Whittingham, J. Chem. Phys. 64 (9): 3670 (1976).

    Article  ADS  Google Scholar 

  23. R. L. Kleinberg and B. G. Silbernagel, Solid State Commun. 36, 345 (1980).

    Article  ADS  Google Scholar 

  24. J. R. Dahn, W. R. McKinnon, R. R. Haering, W. J. L. Buyers, and B. M. Powell, Can. J. Phys. 58, 207 (1980).

    Article  ADS  Google Scholar 

  25. R. Winter and P. Heitjans, J. Phys. Chem. B 105, 6108 (2001).

    Article  Google Scholar 

  26. N. I. Schwarzburger, R. Knobel, H. Behrens, M. Binnewies, I. Horn, A. Pelster, H. F. Arlinghaus, L. Dörrer, and H. Schmidt, Z. Phys. Chem. 226, 461 (2012).

    Article  Google Scholar 

  27. E. A. Suslov, O. V. Bushkova, B. D. Antonov, V. T. Surikov, and A. N. Titov, Zh. Fiz. Khim. 87, 1106 (2013).

    Google Scholar 

  28. M. Wilkening and P. Heitjans, Phys. Rev. B: Condens. Matter 77, 024311 (2008).

    Article  ADS  Google Scholar 

  29. A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda, and D. Morgan, Phys. Rev. B: Condens. Matter 78, 104306 (2008).

    Article  ADS  Google Scholar 

  30. C. Ramínrez and W. Schattke, Surf. Sci. 482–485, 424 (2001).

    Article  Google Scholar 

  31. W. Schattke and C. Ramírez, in Proceedings of the Symposium on Nuclei in the Cosmos (NIC), John von Neumann Institute for Computing, Jülich, Germany, 2004, Ed. by D. Wolf, G. Münster, and M. Kremer (Jülich, 2004), p. 429.

  32. C. Ramírez, R. Adelung, R. Kunz, L. Kipp, and W. Schattke, Phys. Rev. B: Condens. Matter 71, 035426 (2005).

    Article  ADS  Google Scholar 

  33. S. N. Patel and A. A. Balchin, Z. Kristallogr. 164, 273 (1983).

    Google Scholar 

  34. M. S. Whittingham, J. Electroanal. Chem. 118, 229 (1981).

    Article  Google Scholar 

  35. D. W. Murphy, F. J. Di Salvo, G. W. Hull, and J. V. Waszczak, Inorg. Chem. 15, 17 (1976).

    Article  Google Scholar 

  36. M. S. Whittingham and F. R. Gamble, Mater. Res. Bull. 10, 363 (1975).

    Article  Google Scholar 

  37. O. V. Bushkova, A. N. Titov, and S. G. Titova, in Proceedings of the Tenth International Conference on Fundamental Problems of Energy Conversion in Lithium Electrochemical Systems, Saratov State University, Saratov, 2008, Ed. by I. A. Kazarinov (Saratov, 2008), p. 34.

  38. A. N. Titov, Phys. Solid State 51 (4): 714 (2009).

    Article  ADS  Google Scholar 

  39. B. Ruprecht, J. Heine, M. Wilkening, S. Indris, J. Wontcheu, W. Bensch, T. Bredow, and P. Heitjans, Diffus. Fundam. 12, 106 (2010).

    Google Scholar 

  40. W. Küchler and P. Heitjans, Solid State Ionics 70/71, 434 (1994).

    Article  Google Scholar 

  41. C. Ramírez, R. Adelung, L. Kipp, and W. Schattke, Phys. Rev. B: Condens. Matter 73, 195406 (2006).

    Article  ADS  Google Scholar 

  42. A. S. Shkvarin, Yu. M. Yarmoshenko, N. A. Skorikov, A. I. Merentsov, and A. N. Titov, J. Struct. Chem 52 (Suppl.), S70 (2011).

    Article  Google Scholar 

  43. H.-P. Vaterlaus, Helv. Phys. Acta 57, 336 (1984).

    Google Scholar 

  44. T. V. Kuznetsova, A. N. Titov, Yu. M. Yarmoshenko, E. Z. Kurmaev, A. V. Postnikov, V. G. Pleschev, B. Eltner, G. Nikolay, D. Ehm, S. Schmidt, F. Reinert, and S. Huefner, Phys. Rev. B: Condens. Matter 72, 085418 (2005).

    Article  ADS  Google Scholar 

  45. A. I. Merentsov, Yu. M. Yarmoshenko, A. N. Skorikov, A. N. Titov, A. Buling, M. Räkers, M. Neumann, E. G. Galieva, and P. A. Slepuhin, J. Electron Spectrosc. Relat. Phenom. 182, 70 (2010).

    Article  Google Scholar 

  46. A. S. Shkvarin, A. I. Merentsov, Yu. M. Yarmoshenko, N. A. Skorikov, and A. N. Titov, Solid State Phenom. 168–169, 380 (2011).

    Google Scholar 

  47. A. N. Titov, A. I. Merentsov, and V. N. Neverov, Phys. Solid State 48 (8): 1472 (2006).

    Article  ADS  Google Scholar 

  48. C. Wagner, Thermodynamics of Alloys (Addison-Wesley, New York, 1952; Metallurgizdat, Moscow, 1957).

    Google Scholar 

  49. H. I. Starnberg, Mod. Phys. Lett. B 14 (13): 455 (2000).

    Article  ADS  Google Scholar 

  50. F. Sykes and J. W. Essam, J. Math. Phys. 5, 1117 (1964).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Titov.

Additional information

Original Russian Text © M.S. Brezhestovskii, E.A. Suslov, O.V. Bushkova, A.I. Merentsov, A.N. Titov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 10, pp. 2023–2030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezhestovskii, M.S., Suslov, E.A., Bushkova, O.V. et al. Influence of heterovalent substitution in the titanium sublattice on the electrochemical intercalation of lithium in M y Ti1–y Se2 (M = Cr, V)). Phys. Solid State 57, 2078–2086 (2015). https://doi.org/10.1134/S106378341510008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341510008X

Keywords

Navigation