Skip to main content
Log in

Properties of an amorphous silicon dioxide nanopowder prepared by pulsed electron beam evaporation

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An amorphous SiO2 nanopowder with a specific surface area of 154 m2/g has been prepared using pulsed electron beam evaporation of a target from a pyrogenic amorphous Aerosil 90 nanopowder (90 m2/g). It has been found that SiO2 nanoparticles exhibit improved magnetic, thermal, and optical properties as compared to the properties of particles of the Aerosil 90 nanopowder. Possible factors responsible for the appearance of ferromagnetism at room temperature in the amorphous SiO2 nanopowder formed upon electron beam evaporation have been discussed. The photoluminescence and cathodoluminescence properties of the SiO2 nanopowder have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Kopnov, Z. Vager, and R. Naaman, Adv. Mater. (Weinheim) 19, 925 (2007).

    Article  Google Scholar 

  2. P. J. Grace, M. Venkatesan, J. Alaria, J. M. D. Coey, G. Kopnov, and R. Naaman, Adv. Mater. (Weinheim) 21, 71 (2009).

    Article  Google Scholar 

  3. X. Wang, C. M. Zhen, X. W. Liu, X. M. Liu, L. Ma, C. F. Pan, and D. L. Hou, Colloids Surf., A 446, 151 (2014).

    Article  Google Scholar 

  4. C. Zhen, Y. Liu, Y. Zhang, L. Ma, C. Pan, and D. Hou, J. Alloys Compd. 503, 6 (2010).

    Article  Google Scholar 

  5. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  6. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).

    Article  ADS  Google Scholar 

  7. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998).

    Article  ADS  Google Scholar 

  8. A. Colder, F. Huisken, E. Trave, G. Ledoux, O. Guillois, C. Reynaud, H. Hofmeister, and E. Pippel, Nanotechnology 15, L1 (2004).

    Article  ADS  Google Scholar 

  9. C. Zhen, Y. Liu, Y. Zhang, L. Ma, C. Pan, and D. Hou, Solid State Sci. 14, 1454 (2012).

    Article  ADS  Google Scholar 

  10. A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 94, 254 (2003).

    Article  ADS  Google Scholar 

  11. M. V. Zamoryanskaya and V. I. Sokolov, Solid State Phenom. 131–133, 629 (2008).

    Article  Google Scholar 

  12. P. McCord, S. L. Yau, and A. J. Bard, Science (Washington) 25, 68 (1992).

    Article  ADS  Google Scholar 

  13. S. Yu. Turishchev, A. S. Lenshin, E. P. Domashevskaya, V. M. Kashkarov, V. A. Terekhov, K. N. Pankov, and D. A. Khoviv, Phys. Status Solidi C 6, 1651 (2009).

    Article  ADS  Google Scholar 

  14. Yu. Yu. Bacherikov, S. V. Optasyuk, T. E. Konstantinova, and I. A. Danilenko, Tech. Phys. 52 (6), 747 (2007).

    Article  Google Scholar 

  15. S. Yu. Sokovnin and V. G. Il’ves, Ferroelectrics 436, 101 (2012).

    Article  Google Scholar 

  16. L. Oakes, A. Westover, J. W. Mares, S. Chatterjee, W. R. Erwin, R. Bardhan, S. M. Weiss, and C. L. Pint, Sci. Rep. 3, 3020 (2013).

    Article  ADS  Google Scholar 

  17. E. Sun, F. H. Su, Y. T. Shih, H. L. Tsai, C. H. Chen, M. K. Wu, J. R. Yang, and M. J. Chen, Nanotechnology 20, 445202 (2009).

    Article  ADS  Google Scholar 

  18. Technical Bulletin Fine Particles N 11: Basic Characteristics of AEROSILR Fumed Silica, 4th ed. (Evonik, Essen, Germany, 2003).

  19. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, T. Tietze, E. Goering, G. Schütz, P. B. Straumal, and B. Baretzky, Beilstein J. Nanotechnol. 4, 361 (2013).

    Article  Google Scholar 

  20. J. M. D. Coey, Solid State Sci. 7, 660 (2005).

    Article  ADS  Google Scholar 

  21. J. R. Martínez, S. Palomares-Sánchez, G. Ortega-Zarzosa, F. Ruiz, and Y. Chumakov, Mater. Lett. 60, 3526 (2006).

    Article  Google Scholar 

  22. J. M. D. Coey, J. T. Mlack, M. Venkatesan, and P. Stamenov, IEEE Trans. Magn. 46, 2501 (2010).

    Article  ADS  Google Scholar 

  23. F. Guan, L. Yao, F. Xie, L. Tian, X. Fang, and S. Pu, J. Wuhan Univ. Technol., Mater. Sci. Ed. 25, 206 (2010).

    Article  Google Scholar 

  24. V. V. Pankov, M. I. Ivanovskaya, and D. A. Kotikov, in Chemical Problems of the Development of New Materials and Technologies, Ed. by O. A. Ivashkevich (BSU, Minsk, 2008), Issue 3, p. 24 [in Russian].

  25. O. M. Zhilicheva, Candidate’s Dissertation (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, Moscow, 2010).

    Google Scholar 

  26. M. V. Zamoryanskaya, E. V. Ivanova, and A. A. Sitnikova, Phys. Solid State 53 (7), 1474 (2011).

    Article  ADS  Google Scholar 

  27. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).

    Article  ADS  Google Scholar 

  28. H. B. Premkumar, H. Nagabhushana, S. C. Sharma, B. D. Prasad, B. M. Nagabhushana, J. L. Rao, and R. P. S. Chakradhar, Spectrochim. Acta, Part A 126, 220 (2014).

    Article  ADS  Google Scholar 

  29. R. Salh, in Crystalline Silicon—Properties and Uses, Ed. by S. Basu (InTech, Rijeka, Croatia, 2011), Chap. 9.

  30. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).

    Article  ADS  Google Scholar 

  31. T. Suzuki, L. Skuja, K. Kajihama, M. Hirano, T. Kamiya, and H. Hosono, Phys. Rev. Lett. 90, 186404 (2003).

    Article  ADS  Google Scholar 

  32. G. Jia, T. Arguirov, M. Kittler, Z. Su, D. Yang, and J. Sha, Semiconductors 41 (4), 391 (2007).

    Article  ADS  Google Scholar 

  33. B. Delly and E. F. Steigmeier, Appl. Phys. Lett. 67, 2370 (1995).

    Article  ADS  Google Scholar 

  34. E. V. Ivanova and M. V. Zamoryanskaya, Solid State Phenom. 205–206, 457 (2014).

    Google Scholar 

  35. X. H. Sun, N. B. Wong, C. P. Li, S. T. Lee, and T. K. Sham, J. Appl. Phys. 96, 3447 (2004).

    Article  ADS  Google Scholar 

  36. D. D. Ma, S. T. Lee, and J. Shinar, Appl. Phys. Lett. 87, 033107 (2005).

    Article  ADS  Google Scholar 

  37. G. D. Sanders and Y. C. Chang, Phys. Rev. B: Condens. Matter 45, 9202 (1992).

    Article  ADS  Google Scholar 

  38. A. Leto, M. C. Munisso, A. A. Porporati, W. Zhu, and G. Pezzotti, J. Phys. Chem. A 112, 3927 (2008).

    Article  Google Scholar 

  39. V. N. Bogomolov, S. A. Gurevich, M. V. Zamoryaskaya, A. A. Sitnikova, I. P. Smirnova, and V. I. Sokolov, Phys. Solid State 43 (2), 373 (2001).

    Article  ADS  Google Scholar 

  40. L. A. Bakaleinikov, M. V. Zamoryanskaya, E. V. Kolesnikova, V. I. Sokolov, and E. Yu. Flegontova, Phys. Solid State 46 (6), 1018 (2004).

    Article  ADS  Google Scholar 

  41. E. V. Kolesnikova and M. V. Zamoryanskaya, Physica B (Amsterdam) 404, 4653 (2009).

    Article  ADS  Google Scholar 

  42. M. H. Ludwig, J. Menniger, and R. E. Hummel, J. Phys: Condens. Matter 7, 9081 (1995).

    ADS  Google Scholar 

  43. C. Itoh, T. Suzuki, and N. Itoh, Phys. Rev. B: Condens. Matter 41, 3794 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Il’ves.

Additional information

Original Russian Text © V.G. Il’ves, M.G. Zuev, S.Yu. Sokovnin, A.M. Murzakaev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2439–2445.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ves, V.G., Zuev, M.G., Sokovnin, S.Y. et al. Properties of an amorphous silicon dioxide nanopowder prepared by pulsed electron beam evaporation. Phys. Solid State 57, 2512–2518 (2015). https://doi.org/10.1134/S1063783415120161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120161

Keywords

Navigation