Skip to main content
Log in

Light-Emitting Field-Effect Transistors Based on Composite Films of Polyfluorene and CsPbBr3 Nanocrystals

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

Light-emitting organic field-effect transistors (LE-FETs) on the basis of composite films that consist of perovskite nanocrystals (CsPbBr3) embedded in a matrix of conjugated polymer—polyfluorene (PFO)—have been obtained, and their electrical and optical properties have been investigated. Output and transfer current-voltage characteristics (I-Vs) of FETs based on PFO : CsPbBr3 films (component ratio 1 : 1) have a slight hysteresis at temperatures of 100–300 K and are characteristic of hole transport. The hole mobility is ∼3.3 and ∼1.9 cm2/(V s) at the modes of the saturation and low fields, respectively, at 250 K and reaches ∼5 cm2/(V s) at 100 K. It has been shown that the application of pulsed voltage to LE-FETs based on PFO : CsPbBr3 can reduce the ionic conductivity and provide electroluminescence in this structure at 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.‑D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, J. Phys. Chem. Lett. 5, 1421 (2014).

    Article  Google Scholar 

  2. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science (Washington, DC, U. S.) 342, 341 (2013).

    Article  ADS  Google Scholar 

  3. Y. Chen, H. T. Yi, X. Wu, R. Haroldson, Y. N. Gartstein, Y. I. Rodionov, K. S. Tikhonov, A. Zakhidov, X. Y. Zhu, and V. Podzorov, Nat. Commun. 7, 12253 (2016).

    Article  ADS  Google Scholar 

  4. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).

    Article  Google Scholar 

  5. C. Motta, F. El-Mellouhi, and S. Sanvito, Sci. Rep. 5, 12746 (2015).

    Article  ADS  Google Scholar 

  6. X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Nat. Commun. 6, 7383 (2015).

    Article  ADS  Google Scholar 

  7. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.‑S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sar-kar, Md. K. Nazeeruddin, M. Gratzel, and S. I. Seok, Nat. Photon. 7, 486 (2013).

    Article  ADS  Google Scholar 

  8. D. Cortecchia, J. Yin, A. Bruno, S.-Z. A. Lo, G. G. Gurzadyan, S. Mhaisalkar, J.-L. Bredas, and C. Soci, J. Mater. Chem. C 5, 2771 (2017).

    Article  Google Scholar 

  9. National Renewable Energy Laboratory, Best Research Cell Efficiencies. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. Accessed August 2018.

  10. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photon. 8, 506 (2014).

    Article  ADS  Google Scholar 

  11. S. Ahmad, P. K. Kanaujia, H. J. Beeson, A. Abate, F. Deschler, D. Credgington, U. Steiner, G. V. Prakash, and J. J. Baumberg, ACS Appl. Mater. Interfaces 7, 25227 (2015).

    Article  Google Scholar 

  12. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nano 9, 687 (2014).

    Article  Google Scholar 

  13. S. D. Stranks and H. J. Snaith, Nat. Nano 10, 391 (2015).

    Article  Google Scholar 

  14. Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S. H. Im, and T.-W. Lee, Adv. Mater. 27, 1248 (2015).

    Article  Google Scholar 

  15. F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, Nat. Commun. 6, 8238 (2015).

    Article  ADS  Google Scholar 

  16. T. Matsushima, S. Hwang, A. S. D. Sandanayaka, C. Qin, S. Terakawa, T. U. Fujihara, M. Yahiro, and C. Adachi, Adv. Mater. 28, 10275 (2016).

    Article  Google Scholar 

  17. S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, B. Nair, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, and H. Sirringhaus, Sci. Adv. 3, e1601935 (2017).

    Article  ADS  Google Scholar 

  18. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, and M. Muccini, Nat. Mater. 9, 496 (2010).

    Article  ADS  Google Scholar 

  19. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015).

    Article  ADS  Google Scholar 

  20. M. N. F. Hoque, M. Yang, Z. Li, N. Islam, X. Pan, K. Zhu, and Z. Fan, ACS Energy Lett. 1, 142 (2016).

    Article  Google Scholar 

  21. E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumuller, M. G. Christoforo, and M. D. McGehee, Energy Environ. Sci. 7, 3690 (2014).

    Article  Google Scholar 

  22. H.-C. Wang, Z. Bao, H.-Yu. Tsai, A.-C. Tang, and R.‑S. Liu, Small 14, 1702433 (2018).

    Article  Google Scholar 

  23. Y.-H. Kim, H. Cho, and T.-W. Lee, Proc. Natl. Acad. Sci. U.S.A. 113, 11694 (2016).

    Article  ADS  Google Scholar 

  24. A. N. Aleshin, I. P. Shcherbakov, E. V. Gushchina, L. B. Matyushkin, and V. A. Moshnikov, Org. Electron. 50, 213 (2017).

    Article  Google Scholar 

  25. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, and M. V. Kovalenko, Nano Lett. 15, 3692 (2015).

    Article  ADS  Google Scholar 

  26. D. A. Kirilenko, A. T. Dideykin, A. E. Aleksenskiy, A. A. Sitnikova, S. G. Konnikov, and A. Ya. Vul’, Micron 68, 23 (2015).

    Article  Google Scholar 

  27. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  Google Scholar 

  28. J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv. Mater. 27, 7162 (2015).

    Article  Google Scholar 

  29. Th. Forster, Ann. Phys. 437, 55 (1948).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

TEM and HR-PEM studies have been conducted using the equipment of the Federal Joint Research Center “Materials and Characteristics in Advanced Technologies” with the support of the Ministry of Education and Science of the Russian Federation (ID RFMEFI62117X0018).

The authors are grateful to I.N. Trapeznikova for her help in recording absorption spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Shcherbakov, I.P., Kirilenko, D.A. et al. Light-Emitting Field-Effect Transistors Based on Composite Films of Polyfluorene and CsPbBr3 Nanocrystals. Phys. Solid State 61, 256–262 (2019). https://doi.org/10.1134/S1063783419020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020021

Navigation