Skip to main content
Log in

Size Effect in Nanocomposites Based on Molecular Ferroelectric Diisopropylammonium Bromide

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We present the results of studies of the dielectric properties of nanocomposites based on Al2O3 oxide films with a pore size of 330 and 60 nm with particles of an organic ferroelectric diisopropylammonium bromide (C6H16BrN, DIPAB) introduced into the pores, aimed at determining the size dependences of phase transition parameters. A shift in the phase transition to low temperatures and diffusion of the transition are found, which become more significant for smaller pores. A broadening of the temperature hysteresis of the dielectric constant of nanocomposites during the phase transition was also observed. The decrease in the phase transition temperature in nanocomposites with DIPAB nanoparticles is consistent with theoretical models of the size effects on the structural phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. I. Kitaigorodsky, Molecular Crystals and Molecules (Nauka, Moscow, 1971; Academic, New York, 1973).

  2. M. Owczarek, K. A. Hujsak, D. P. Ferris, A. Prokofjevs, I. Mayerz, P. Szkalarz, H. Zhang, A. A. Sarjean, C. L. Stern, R. Jakubas, S. Hong, V. P. Dravid, and J. F. Stoddart, Nat. Commun. 7, 13108 (2016).

    Article  ADS  Google Scholar 

  3. S. Horiuchi and Y. Tokura, Nat. Mater. 7, 357 (2008).

    Article  ADS  Google Scholar 

  4. D.-W. Fu, W. Zhang, H.-L. Cai, J.-Z. Ge, Y. Zhang, and R.-G. Xiong, Adv. Mater. 23, 5658 (2011).

    Article  Google Scholar 

  5. D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Li, and R.‑G. Xiong, Science (Washington, DC, U. S.) 339, 425 (2013).

    Article  ADS  Google Scholar 

  6. R. K. Saripalli, D. Swain, S. Prasad, H. Nhalil, H. L. Bhat, T. N. G. Row, and S. Elizabeth, J. Appl. Phys. 121, 114101 (2017).

    Article  ADS  Google Scholar 

  7. A. Piecha-Bisiorek, A. Gągor, D. Isakov, P. Zieliņski, M. Gałązka, and R. Jakubas, Inorg. Chem. Front. 4, 553 (2017).

    Article  Google Scholar 

  8. E. Kabir, M. Khatun, T. Ghosh, M. J. Raihan, and M. Rahman, AIP Conf. Proc. 1942, 040006 (2018).

    Article  Google Scholar 

  9. Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, Ed. by M. Alguero, J. M. Gregg, and L. Mitoseriu (Wiley, Chichester, UK, 2016).

    Google Scholar 

  10. J. F. Scott, F. D. Morrison, M. Miyake, and P. Zubko, Ferroelectrics 336, 237 (2006).

    Article  Google Scholar 

  11. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskiy, V. A. Parfenov, and I. V. Egorova, Phase Trans. 91, 293 (2018).

    Article  Google Scholar 

  12. C. Thirmal, P. P. Biswas, Y. J. Shin, T. W. Noh, N. V. Giridharan, A. Venimadhav, and P. Murugavel, J. Appl. Phys. 120, 124107 (2016).

    Article  ADS  Google Scholar 

  13. A. Piecha, A. Gągor, R. Jakubasa, and P. Szklarz, Cryst. Eng. Commun. 15, 940 (2013).

    Article  Google Scholar 

  14. Y. Li, K. Li, and J. He, Chem. Phys. Lett. 689, 174 (2017).

    Article  ADS  Google Scholar 

  15. H. Yadav, N. Sinha, S. Goel, A. Hussain, and B. Ku-mar, J. Appl. Crystallogr. 49, 2053 (2016).

    Article  Google Scholar 

  16. K. W. Wagner, Die Isolierstoffe der Elektrotechnik (Springer, Berlin, 1924).

    Google Scholar 

  17. D. Yadlovker and S. Berger, Phys. Rev. B 71, 184112 (2005).

    Article  ADS  Google Scholar 

  18. S. V. Baryshnikov, E. V. Charnaya, E. V. Stukova, A. Yu. Milinskiy, and C. Tien, Ferroelectrics 396, 3 (2010).

    Article  Google Scholar 

  19. S. V. Baryshnikov, E. V. Charnaya, E. V. Stukova, A. Yu. Milinskii, and C. Tien, Phys. Solid State 52, 1444 (2010).

    Article  ADS  Google Scholar 

  20. C. Tien, E. V. Charnaya, D. Yu. Podorozhkin, M. K. Lee, and S. V. Baryshnikov, Phys. Status Solidi B 246, 2346 (2009).

    Article  ADS  Google Scholar 

  21. W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B 50, 698 (1994).

    Article  ADS  Google Scholar 

  22. C. L. Wang, Y. Xin, X. S. Wang, and W. L. Zhong, Phys. Rev. B 62, 11423 (2000).

    Article  ADS  Google Scholar 

  23. P. Sedykh and D. Michel, Phys. Rev. B 79, 134119 (2009).

    Article  ADS  Google Scholar 

  24. X. Y. Lang and Q. Jiang, J. Nanopart. Res. 9, 595 (2007).

    Article  ADS  Google Scholar 

  25. A. V. Uskov, E. V. Charnaya, A. L. Pirozerskii, and A. S. Bugaev, Ferroelectrics 482, 70 (2015).

    Article  Google Scholar 

  26. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectric and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Baryshnikov.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baryshnikov, S.V., Milinskii, A.Y., Charnaya, E.V. et al. Size Effect in Nanocomposites Based on Molecular Ferroelectric Diisopropylammonium Bromide. Phys. Solid State 61, 134–138 (2019). https://doi.org/10.1134/S1063783419020057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419020057

Navigation