Skip to main content
Log in

X-ray radiation from the volume discharge in atmospheric-pressure air

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

X-ray radiation from the volume discharge in atmospheric-pressure air is studied under the conditions when the voltage pulse rise time varies from 0.5 to 100 ns and the open-circuit voltage amplitude of the generator varies from 20 to 750 kV. It is shown that a volume discharge from a needle-like cathode forms at a relatively wide voltage pulse (to ≈60 ns in this work). The volume character of the discharge is due to preionization by fast electrons, which arise when the electric field concentrates at the cathode and in the discharge gap. As the voltage pulse rise time grows, X-ray radiation comes largely from the discharge gap in accordance with previous experiments. Propagation of fast avalanche electrons in nitrogen subjected to a nonuniform unsteady electric field is simulated. It is demonstrated that the amount of hard X-ray photons grows not only with increasing voltage amplitude but also with shortening pulse rise time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, Usp. Fiz. Nauk 107, 201 (1972) [Sov. Phys. Usp. 15, 282 (1972)].

    Google Scholar 

  2. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Usp. Fiz. Nauk 160(7), 49 (1990) [Sov. Phys. Usp. 33, 521 (1990)].

    Google Scholar 

  3. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filigin, Usp. Fiz. Nauk 164, 263 (1994) [Phys. Usp. 37, 247 (1994)].

    Google Scholar 

  4. V. V. Osipov, Usp. Fiz. Nauk 170, 225 (2000) [Phys. Usp. 43, 221 (2000)].

    Google Scholar 

  5. A. V. Gurevich and K. P. Zybin, Usp. Fiz. Nauk 171, 1177 (2001) [Phys. Usp. 44, 1119 (2001)].

    Article  Google Scholar 

  6. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 174, 953 (2004) [Phys. Usp. 47, 887 (2004)].

    Google Scholar 

  7. Excimer Lasers, Ed. by C. K. Rhodes (Springer, New York, 1979; Mir, Moscow, 1981).

    Google Scholar 

  8. Applied Atomic Collision Physics, Vol. 3: Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York, 1982; Mir, Moscow, 1986).

    Google Scholar 

  9. V. Yu. Baranov, V. M. Borisov, and Yu. Yu. Stepanov, Electric-Discharge Excimer Lasers on Noble Gases Halogenides (Énergoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  10. G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991; SPIE, Washington, 1995).

    Google Scholar 

  11. Encyclopedia of Low-Temperature Plasmas, Ed. by V. E. Fortov, Ser. B, Vol. 11–4: Gas and Plasma Lasers, Ed. by S. I. Yakovlenko (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  12. L. V. Tarasova and L. N. Khudyakova, Zh. Tekh. Fiz. 39, 1530 (1969) [Sov. Phys. Tech. Phys. 14, 1148 (1969)].

    Google Scholar 

  13. L. V. Tarasova, L. N. Khudyakova, T. V. Loĭko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 19, 351 (1974)].

    Google Scholar 

  14. A. I. Pavlovskiĭ, V. S. Bosamykin, V. I. Karelin, and V. S. Nikol’skiĭ, Kvantovaya Élektron. (Moscow) 3, 601 (1976).

    Google Scholar 

  15. P. N. Dashuk and S. L. Kulakov, Pis’ma Zh. Tekh. Fiz. 5(5), 69 (1979) [Sov. Tech. Phys. Lett. 5, 26 (1979)].

    Google Scholar 

  16. W. W. Byszewski and G. Renhold, Phys. Rev. A 26, 2826 (1982).

    Article  ADS  Google Scholar 

  17. S. N. Buranov, V. V. Gorokhov, V. I. Karelin, et al., Kvantovaya Élektron. (Moscow) 18, 891 (1991).

    Google Scholar 

  18. V. F. Tarasenko, V. M. Orlovskiĭ, and S. A. Shunailov, Izv. Vyssh. Uchebn. Zaved., Fiz. 46(3), 94 (2003).

    Google Scholar 

  19. V. F. Tarasenko, S. I. Yakovlenko, V. M. Orlovskiĭ, et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 737 (2003) [JETP Lett. 77, 611 (2003)].

    Google Scholar 

  20. P. B. Repin and A. G. Rep’ev, Zh. Tekh. Fiz. 74(7), 33 (2004) [Tech. Phys. 49, 839 (2004)].

    Google Scholar 

  21. V. F. Tarasenko, V. S. Skakun, I. D. Kostyrya, et al., Laser Part. Beams 22, 75 (2004).

    Article  ADS  Google Scholar 

  22. S. B. Alekseev, V. P. Gubanov, I. D. Kostyrya, et al., Kvantovaya Élektron. (Moscow) 34, 1007 (2004).

    Article  Google Scholar 

  23. I. D. Kostyrya and V. F. Tarasenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 85 (2004).

  24. I. D. Kostyrya, V. M. Orlovskiĭ, V. F. Tarasenko, et al., Zh. Tekh. Fiz. 75(7), 65 (2005) [Tech. Phys. 50, 457 (2005)].

    Google Scholar 

  25. I. D. Kostyrya, V. M. Orlovskiĭ, V. F. Tarasenko, et al., Zh. Tekh. Fiz. 75(7), 65 (2005) [Tech. Phys. 50, 881 (2005)].

    Google Scholar 

  26. V. F. Tarasenko and S. I. Yakovlenko, Phys. Scr. 72, 41 (2005).

    Article  ADS  Google Scholar 

  27. V. F. Tarasenko and S. I. Yakovlenko, Plasma Devices Op. 13, 231 (2005).

    Article  Google Scholar 

  28. V. F. Tarasenko and I. D. Kostyrya, Izv. Vyssh. Uchebn. Zaved., Fiz. 48(12), 40 (2005).

    Google Scholar 

  29. I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 76(3), 64 (2006) [Tech. Phys. 51, 356 (2006)].

    Google Scholar 

  30. A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 32(10), 7 (2006) [Tech. Phys. Lett. 32, 417 (2006)].

    Google Scholar 

  31. V. B. Bratchikov, V. M. Zverev, A. I. Kormilitsyn, et al., in Proceedings of the 15th International Conference on High-Power Particle Beams (BEAMS-2004), St. Petersburg, 2004, pp. 356–359.

  32. S. N. Rukin, Prib. Tekh. Éksp., No. 4, 5 (1999).

  33. M. I. Yalandin and V. G. Shpak, Prib. Tekh. Éksp., No. 3, 5 (2001).

  34. G. A. Mesyats, Pulsed Power Engineering and Electronics (Nauka, Moscow, 2004; Springer, Berlin, 2004).

    Google Scholar 

  35. A. N. Tkachev and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 10, 8 (2005).

  36. V. F. Tarasenko, S. I. Yakovlenko, S. A. Shunailov, et al., Laser Phys. 16, 526 (2006).

    Article  ADS  Google Scholar 

  37. S. I. Yakovlenko, Laser Phys. 16, 403 (2006).

    Article  ADS  Google Scholar 

  38. V. F. Tarasenko and S. I. Yakovlenko, Preprint No. 48, IOF RAN (Institute of General Physics, Russian Academy of Sciences, Moscow, 2006).

    Google Scholar 

  39. V. F. Tarasenko and S. I. Yakovlenko, Usp. Fiz. Nauk 176, 793 (2006) [Phys. Usp. 49, 767 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.B. Bratchikov, K.A. Gagarinov, I.D. Kostyrya, V.F. Tarasenko, A.N. Tkachev, S.I. Yakovlenko, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 7, pp. 34–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratchikov, V.B., Gagarinov, K.A., Kostyrya, I.D. et al. X-ray radiation from the volume discharge in atmospheric-pressure air. Tech. Phys. 52, 856–864 (2007). https://doi.org/10.1134/S1063784207070067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207070067

PACS numbers

Navigation