Skip to main content
Log in

Capillary oscillations and stability of a charged drop rotating about the axis of symmetry

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stability of a charged conductive liquid drop rotating about the axis of symmetry against the pressure of the self-charge electric field and inertial force pressure is investigated in an approximation linear in oscillation amplitude and square of the spheroidal drop deformation eccentricity. It is found that the axisymmetric modes of the rotating drop are stable. Only nonaxisymmetric modes with azimuthal numbers maximal for a given mode may be unstable. The Coriolis force plays a stabilizing role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Belyaev and V. G. Zelevinskii, Usp. Fiz. Nauk 147, 210 (1985) [Sov. Phys. Usp. 28, 854 (1985)].

    Google Scholar 

  2. A. I. Grigor’ev and O. A. Sinkevich, Zh. Tekh. Fiz. 56, 1985 (1986) [Sov. Phys. Tech. Phys. 31, 1185 (1986)].

    Google Scholar 

  3. A. I. Grigor’ev and S. O. Shiryaeva, Phys. Scr. 54, 660 (1996).

    Article  ADS  Google Scholar 

  4. E. Trinch and T. G. Wang, J. Fluid Mech. 122, 315 (1982).

    Article  ADS  Google Scholar 

  5. N. Jakobi, A. P. Croonquist, D. D. Elleman, and T. G. Wang, in Proceedings of the 2nd International Colloquium on Drops and Bubbles, Pasadena, 1982, JPL Publ. No. 82–7, p. 31.

  6. Hisao Azuma and Shoichi Yoshihara, J. Fluid Mech. 393, 309 (1999).

    Article  MATH  ADS  Google Scholar 

  7. Won-Kyu Rhim and Takehiko Ishikawa, Rev. Sci. Instrum. 72, 3572 (2001).

    Article  ADS  Google Scholar 

  8. Taric Al-Hassan, C. J. Mumfors, and G. V. Jeffreys, Chem. Ing. Technol. 14, 65 (2004).

    Google Scholar 

  9. S. S. Saghal, A. Rednikov, and K. Ohsaka, Ann. N.Y. Acad. Sci. 1027, 447 (2004).

    Article  ADS  Google Scholar 

  10. S. Chandrasekhar, Proc. R. Soc. London, Ser. A 286(1404), 1 (1965).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. C. Sozou, J. Fluid Mech. 56, 305 (1972).

    Article  MATH  ADS  Google Scholar 

  12. C. E. Rosenkilde and R. R. Randall, Acta Mech. 20, 167 (1974).

    Article  ADS  Google Scholar 

  13. N. K. Radyakin, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 78 (1979).

  14. V. A. Arkhipov, V. P. Bushlanov, et al., Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 13 (1982).

  15. M. Athanassenas, Annali delta Scuola Normale Superiore de Piza 26, 749 (1998).

    MATH  MathSciNet  Google Scholar 

  16. R. A. Brown and L. E. Scriven, Proc. R. Soc. London, Ser. A 371, 331 (1980).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. J. P. Kudbitschek and P. D. Weidman, J. Fluid Mech. 572, 261 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  18. F. Melo, J. F. Joanny, and S. Fauve, Phys. Rev. Lett. 63, 1958 (1989).

    Article  ADS  Google Scholar 

  19. O. A. Basaran and L. E. Scriven, Phys. Fluids A 1, 795 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. I. Grigor’ev and S. O. Shiryaeva, Zh. Tekh. Fiz. 69(7), 10 (1999) [Tech. Phys. 44, 745 (1999)].

    Google Scholar 

  21. S. I. Shchukin and A. I. Grigor’ev, Zh. Tekh. Fiz. 69(11), 48 (1999) [Tech. Phys. 44, 913 (1999)].

    Google Scholar 

  22. Rayleigh Lord (J. V. Strutt), Philos. Mag. 14, 184 (1882).

    Google Scholar 

  23. A. I. Grigor’ev, Zh. Tekh. Fiz. 55, 1272 (1985) [Sov. Phys. Tech. Phys. 30, 736 (1985)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Additional information

Original Russian Text © S.O. Shiryaeva, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 6, pp. 33–42.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiryaeva, S.O. Capillary oscillations and stability of a charged drop rotating about the axis of symmetry. Tech. Phys. 54, 795–804 (2009). https://doi.org/10.1134/S1063784209060061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209060061

PACS numbers

Navigation