Skip to main content
Log in

Self-consistent model of nanowire growth and crystal structure with regard to the adatom diffusion

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A self-consistent model of growth and structure of semiconductor nanowires is proposed. The crystal phase of group III–V semiconductor nanowires is studied. The critical radius of the transition from the hexagonal wurtzite (WZ) structure to the cubic structure of zinc blende (ZB) type is calculated as a function of parameters of the system of materials and the gaseous medium supersaturation. The model presented here is applicable to both gas-phase and molecular beam epitaxies and allows one to calculate the probability of formation of the WZ and ZB phases under various deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 1585 (2009) [Semiconductors 43, 1539 (2009)].

    Google Scholar 

  2. T. Bryllert, L.-E. Wernersson, L. E. Fröberg, and L. Samuelson, IEEE Electron Device Lett. 27, 323 (2006).

    Article  ADS  Google Scholar 

  3. H. Shingo, T. Nobuo, S. Shu, M. Kyosuke, I. Katsuhiko, T. Hideo, and K. Makoto, J. Appl. Phys. 98, 094305 (2005).

    Article  Google Scholar 

  4. S. Rerisanu, V. Gouttenoire, P. Vincent, A. Ayari, M. Choueib, M. Bechelany, D. Cornu, and S. T. Purcell, Phys. Rev. B 77, 165434 (2008).

    Article  ADS  Google Scholar 

  5. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91, 233117 (2007).

    Article  ADS  Google Scholar 

  6. A. L. Persson, M. W. Larsson, S. Stengstrom, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Nature Mater. 3, 677 (2004).

    Article  ADS  Google Scholar 

  7. J. C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, and F. Glas, Appl. Phys. Lett. 87, 203101 (2006).

    Article  ADS  Google Scholar 

  8. I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, Yu. B. Samsonenko, V. G. Dubrovskii, V. M. Ustinov, O. M. Gorbenko, D. Litvinov, and D. Gerthsen, Fiz. Tverd. Tela (St. Petersburg) 47, 2121 (2005) [Phys. Solid State 47, 2213 (2005)].

    Google Scholar 

  9. M. Moewe, L. C. Chuang, V. G. Dubrovskii, and C. Chang-Hasnain, J. Appl. Phys. 104, 044313 (2008).

    Article  ADS  Google Scholar 

  10. K. A. Dick, P. Caroff, J. Bolinsson, M. E. Messing, J. Johansson, K. Deppert, R. L. Wallenberg, and L. Samuelson, Semicond. Sci. Technol. 25, 024009 (2010).

    Article  ADS  Google Scholar 

  11. H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblum, Nano Lett. 9, 215 (2009).

    Article  ADS  Google Scholar 

  12. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, A. D. Bouravleuv, Yu. B. Samsonenko, D. L. Dheeraj, H. L. Zhou, C. Sartel, J. C. Harmand, G. Patriarche, and F. Glas, Phys. Rev. B 80, 066940 (2009).

    Article  Google Scholar 

  13. F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).

    Article  ADS  Google Scholar 

  14. V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Phys. Rev. B 78, 235301 (2008).

    Article  ADS  Google Scholar 

  15. V. G. Dubrovskii and N. V. Sibirev, Pis’ma Zh. Tekh. Fiz. 35(8), 73 (2009) [Tech. Phys. Lett. 35, 380 (2009)].

    Google Scholar 

  16. T. Akiyama, K. Sano, K. Nakamura, and T. Ito, Jpn. J. Appl. Phys. 45, L275 (2006).

    Article  ADS  Google Scholar 

  17. R. Leitsmann and B. Bechstedt, J. Appl. Phys. 102, 063528 (2007).

    Article  ADS  Google Scholar 

  18. V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. B 77, 035414 (2008).

    Article  ADS  Google Scholar 

  19. G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 587 (2005) [Semiconductors 39, 547 (2005)].

    Google Scholar 

  20. V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, V. M. Ustinov, M. Tchernycheva, and J. C. Harmand, Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 1103 (2006) [Semiconductors 40, 1075 (2006)].

    Google Scholar 

  21. V. S. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, J. C. Harmand, and V. M. Ustinov, Surf. Sci. 601, 4395 (2007).

    Article  ADS  Google Scholar 

  22. M. C. Plante and R. R. LaPierre, J. Cryst. Growth 286, 394 (2006).

    Article  ADS  Google Scholar 

  23. V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, J. Cryst. Growth 289, 1 (2006).

    Article  ADS  Google Scholar 

  24. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, and C. Chang-Hasnain, Phys. Rev. B 79, 205316 (2009).

    Article  ADS  Google Scholar 

  25. L. E. Fröberg, W. Seifert, and J. Johansson, Phys. Rev. B 76, 153401 (2007).

    Article  ADS  Google Scholar 

  26. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  27. E. I. Givargizov and A. A. Chernov, Kristallografiya 18, 147 (1973).

    Google Scholar 

  28. V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Pis’ma Zh. Tekh. Fiz. 30(16), 41 (2004) [Tech. Phys. Lett. 30, 682 (2004)].

    Google Scholar 

  29. D. Kaschiev, Nucleation: Basic Theory with Applications (Butterworth Heinemann, Oxford, 2000).

    Google Scholar 

  30. V. G. Dubrovskii, N. V. Sibirev, and M. A. Timofeeva, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 1267 (2009) [Semiconductors 43, 1226 (2009)].

    Google Scholar 

  31. F. Glas, Phys. Status Solidi B 244, 254 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Nazarenko.

Additional information

Original Russian Text © M.V. Nazarenko, N.V. Sibirev, V.G. Dubrovskii, 2011, published in Zhurnal Tekhnichesko’ Fiziki, 2011, Vol. 81, No. 2, pp. 153–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarenko, M.V., Sibirev, N.V. & Dubrovskii, V.G. Self-consistent model of nanowire growth and crystal structure with regard to the adatom diffusion. Tech. Phys. 56, 311–315 (2011). https://doi.org/10.1134/S1063784211020228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211020228

Keywords

Navigation