Skip to main content
Log in

Nanolithography in microelectronics: A review

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The current status of basic photolithographic techniques allowing researchers to achieve results that seemed to be unrealistic even a short time ago is reviewed. For example, advanced DUV photolithography makes it possible to exactly reproduce IC elements 25 times smaller in size than the wavelength of an excimer laser used as a lithographic tool. Approaches owing to which optical lithography has pushed far beyond the Rayleigh-Abbe diffraction limit are considered. Among them are optical proximity correction, introduction of an artificial phase shift, immersion, double exposure, double patterning, and others. The prospects for further advancement of photolithography into the nanometer range are analyzed, and the capabilities of photolithography are compared with those of electronolithography, EUV lithography, and soft X-ray lithography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Seisyan, in Proceedings of the Japan-Russia Advanced Science and Technology Forum, Tokyo, 2000, pp. 164–172.

  2. R. P. Seisyan, in Proceedings of the International Forum on Nanotechnologies (Rusnanotech’08), Moscow, 2008, p. 278.

  3. S. Wolf, Microchip Manufacturing (Lattice, Sunstet Beach, 2004).

    Google Scholar 

  4. G. N. Berezin, A. V. Nikitin, and R. A. Sirus, Optical Backgrounds of Contact Photolithography (Radio i Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  5. R. P. Seisyan, Applied Physics: Microelectronics (SPb-GPU, St. Petersburg, 2002), Chap. 2 [in Russian].

    Google Scholar 

  6. R. P. Seisyan, Zh. Tekh. Fiz. 75(5), 1 (2005) [Tech. Phys. 50, 535 (2005)].

    Google Scholar 

  7. Principles of Lithography, Ed. by H. J. Levinson (SPIE, Washington, 2001).

    Google Scholar 

  8. http://www.ASML.com.

  9. M. A. Gan and R. P. Seisyan, in Proceedings of the International Forum on Nanotechnologies (Rusnanotech’08), Moscow, 2008, p. 48; A. B. Bel’skii, M. A. Gann, I. A. Mironov, and R. P. Seisyan, Opt. Zh. 76 (8), 59 (2009).

  10. J. T. Wallmark, in Microelectronics, Ed. by E. Keonjan (McGraw-Uill, New York, 1963), pp. 10–96.

    Google Scholar 

  11. R. P. Seisyan, in Proceedings of the 14th International Conference on Laser Optics (LO-2010), St. Petersburg, 2010, p. 25.

  12. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, IEEE Trans. Electron Devices 29, 1628 (1982).

    Article  Google Scholar 

  13. B. W. Smith, et al., Proc. SPIE 5377 (2004).

  14. R. F. Pease and S. Y. Chou, Proc. IEEE 96, 248 (2008); D. Yost, T. Forte, M. Fritze, D. Astolfi, V. Suntharalingam, C. K. Chen, and S. Cann, J. Vac. Sci. Technol. B 20, 191 (2002).

    Article  Google Scholar 

  15. T. Hirayama, et al., in Proceedings of the International Symposium on Extreme Ultraviolet Lithography (EUV SEMATECH), Tahoe, 2008.

  16. M. Shirai, et al., in Proceedings of the International Symposium on Extreme Ultraviolet Lithography (EUV SEMATECH), Sapporo, 2007.

  17. N. A. Kaliteevskaya, S. I. Nesterov, V. A. Gorelov, and R. P. Seisyan, in Proceedings of the International Forum on Nanotechnologies (Rusnanotech’08), Moscow, 2008, p. 249; E. G. Barash, A. Yu. Kabin, V. M. Lyubin, and R. P. Seisyan, Zh. Tekh. Fiz. 62 (3), 106 (1992) [Sov. Phys. Tech. Phys. 37, 292 (1992)].

  18. D. Yost, T. Forte, M. Fritze, D. Astolfi, V. Suntharalingam, C. K. Chen, and S. Cann, J. Vac. Sci. Technol. B 20, 191 (2002).

    Article  Google Scholar 

  19. M. Fritze, et al., Lincoln Lab. J. 14, 237 (2003).

    Google Scholar 

  20. M. Lercel, Future Fab. Int., 28, 152 (2009).

    Google Scholar 

  21. S. V. Gaponov, in Proceedings of the Symposium “Nanophysics and Nanoelectronics,” Nizhni Novgorod, 2005; N. I. Ukhalo and N. N. Salashchenko, Vestn. Ross. Akad. Nauk 78 (5) (2008).

  22. T. Kuhlmann, S. Yulin, T. Feigl, et al., Appl. Opt. 41, 2048 (2002).

    Article  ADS  Google Scholar 

  23. P. A. Belov, K. R. Simovskii, and Ya. Khao, in Problems of Coherent and Nonlinear Optics (SPbGUITMO, St. Petersburg, 2006) pp. 37–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.P. Seisyan, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 8, pp. 1–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seisyan, R.P. Nanolithography in microelectronics: A review. Tech. Phys. 56, 1061–1073 (2011). https://doi.org/10.1134/S1063784211080214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211080214

Keywords

Navigation