Skip to main content
Log in

Optical-pyrometric diagnostics of the state of silicon during nanopulsed laser irradiation

  • Optics, Quantum Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The dynamics of the reflectivity at λ = 0.53 μm and the IR radiation of silicon in the wavelength range 0.9–1.2 μm is studied under the action of nanosecond ruby laser radiation pulses. When radiation energy density W is lower than the threshold of laser-induced melting of the surface of a semiconductor crystal, the major contribution to the IR radiation emitted by this crystal is made by edge photoluminescence. As the melting threshold is exceeded, the nanosecond dynamics of the detected IR radiation changes from photoluminescence to the thermal radiation of the forming Si phase melt with a high reflectivity. The results of pyrometric measurements of the peak melt surface temperature as a function of W obtained at an effective wavelength λ e = 1.04 μm of the detected IR radiation agree with the data of analogous measurements performed at λ e = 0.53 and 0.86 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Auston, C. M. Surko, T. N. C. Venkatesan, R. E. Slusher, J. A. Golovchenko, Appl. Phys. Lett. 33, 437 (1978).

    Article  ADS  Google Scholar 

  2. T. D. Ivlev, Sov. Tech. Phys. Lett. 8, 204 (1982).

    Google Scholar 

  3. G. D. Ivlev and V. L. Malevich, Kvantovaya Elektron. (Moscow) 15, 2584 (1988).

    Google Scholar 

  4. G. D. Ivlev and E. I. Gatskevich, Semiconductors 37, 604 (2003).

    Article  ADS  Google Scholar 

  5. M. Kemmler, G. Wartmann, and D. von der Linde, Appl. Phys. Lett. 45, 159 (1984).

    Article  ADS  Google Scholar 

  6. T. S. Ballet, J. C. S. Kools, and J. Dieleman, Appl. Surf. Sci. 46, 292 (1990).

    Article  ADS  Google Scholar 

  7. X. Xu, C. P. Grigoropoulus, and R. E. Russo, Appl. Phys. Lett. 65, 1745 (1994).

    Article  ADS  Google Scholar 

  8. G. D. Ivlev, Tech. Phys. Lett. 22, 474 (1996).

    ADS  Google Scholar 

  9. G. D. Ivlev and E. I. Gatskevich, Appl. Surf. Sci. 143, 265 (1999).

    Google Scholar 

  10. G. D. Ivlev, E. I. Gatskevich, and D. N. Sharaev, Proc. SPIE 4157, 78 (2001).

    Article  ADS  Google Scholar 

  11. V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, Optical Properties of Semiconductors: A Handbook (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  12. E. G. Gule, E. B. Kaganovich, I. M. Kizyak, E. G. Manoilov, and S. V. Svechnikov, Semiconductors 39, 496 (2005).

    Article  Google Scholar 

  13. A. R. Regel’ and V. M. Glazov, Physical Properties of Electron Melts (Nauka, Moscow, 1980).

    Google Scholar 

  14. V. N. Snopko, Fundamentals of Methods of Pyrometry by Thermal Emission Spectrum (Inst Fiz. im. B. I. Stepanova NAN Belorussii, Minsk, 1999).

    Google Scholar 

  15. G. D. Ivlev and E. I. Gatskevich, Semiconductors 30, 1093 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Ivlev.

Additional information

Original Russian Text © G.D. Ivlev, E.I. Gatskevich, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 6, pp. 69–72.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivlev, G.D., Gatskevich, E.I. Optical-pyrometric diagnostics of the state of silicon during nanopulsed laser irradiation. Tech. Phys. 57, 803–806 (2012). https://doi.org/10.1134/S1063784212060138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212060138

Keywords

Navigation