Skip to main content
Log in

Double wavelet transform of frequency-modulated nonstationary signal

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A mathematical model is proposed for a frequency-modulated signal in the form of a system of Gaussian peaks randomly distributed in time. An analytic expression is obtained for continuous wavelet transform (CWT) of the model signal. For signals with time-varying sequence of peaks, the main ridge of the skeleton characterized by frequency ν MFBmax (t) is analyzed. The value of ν MFBmax (t) is determined for any instant t from the condition of the CWT maximum in the spectral range of the main frequency band (MFB). Double CWT of function ν MFBmax (t) is calculated for a frequency-modulated signal with a transition regions of smooth frequency variation (trend) as well as with varying frequency oscillations relative to the trend. The duration of transition periods of the signal is determined using spectral integrals E ν(t). The instants of emergence and decay of low-frequency spectral components of the signal are determined. The double CWT method can be used for analyzing cardiac rhythms and neural activity, as well as nonstationary processes in quantum radio physics and astronomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Mallat, Wavelet Tour of Signal Processing, 3rd ed. (Academic, New York, 2008).

    Google Scholar 

  2. A. A. Koronovskii and A. E. Khramov, Continuous Wavelet Analysis and Its Applications (Fizmatlit, Moscow, 2003).

    Google Scholar 

  3. K. Chui, Introduction to Wavelets (Academic, New York, 1992).

    MATH  Google Scholar 

  4. N. K. Smolentsev, Wavelet Theory Principles. MATLAB Wavelets (DMK, Moscow, 2008).

    Google Scholar 

  5. I. Daubechies Ten Lectures on Wavelets (SIAM, Philadelphia, 1992).

    Book  MATH  Google Scholar 

  6. A. Cohen, Numerical Analysis of Wavelet Method (Elsevier, Amsterdam, 2003).

    Google Scholar 

  7. Advances in Wavelet: Theory and Their Applications in Engineering, Physics and Technology, Ed. by D. Baleanu (InTech, Rijeka, 2012).

    Google Scholar 

  8. S. V. Bozhokin and N. B. Suvorov, Biomed. Radioelektron., No. 3, 21 (2008).

    Google Scholar 

  9. S. V. Bozhokin, Tech. Phys. 55, 1248 (2010).

    Article  Google Scholar 

  10. S. V. Bozhokin, Tech. Phys. 57, 893 (2012).

    Article  Google Scholar 

  11. A. V. Tankanag and N. K. Cheremis, Biofizika 54, 537 (2009).

    Google Scholar 

  12. O. V. Sosnovtseva, A. N. Pavlov, E. Mosekilde, N. H. Holstein-Rathlou, and D. J. Marsh, Physiol. Meas. 26, 351 (2005).

    Article  Google Scholar 

  13. P. S. Addison and J. N. Watson, Int. J. Wavelets Multiresolut. Inform. Process. 2, 43 (2004).

    Article  Google Scholar 

  14. A. N. Pavlov, A. E. Khramov, A. A. Koronovskii, E. Yu. Sitnikova, V. A. Makarov, and A. A. Ovchinnikov, Phys. Usp. 55, 845 (2012).

    Article  Google Scholar 

  15. U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, Med. Biol. Eng. Comput. 44, 1031 (2006).

    Article  Google Scholar 

  16. V. M. Tikhonenko, Practical Work on Holter Monitoring (BKhV, St. Peterseburg, 2012).

    Google Scholar 

  17. S. V. Bozhokin, E. M. Lesova, V. O. Samoilov, and P. I. Tolkachev, Biofizika 57, 696 (2012).

    Google Scholar 

  18. G. D. Abarbanel’, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Khuerta, M. M. Sushchik, and L. L. Rubchinskii, Phys. Usp. 39, 337 (1996).

    Article  ADS  Google Scholar 

  19. A. V. Chizhov and L. J. Graham, Phys. Rev. E 77, 011910 (2008).

    Article  ADS  Google Scholar 

  20. I. V. Zhdanova, K. Masuda, S. V. Bozhokin, D. L. Rosene, J. González-Martínez, S. Schettler, and E. Samorodinsky, PLos ONE 7, e33327 (2012).

    Article  ADS  Google Scholar 

  21. A. G. Chirkov and B. G. Matisov, Modern Theory of Stability of Precision Generators (Politekh. Univ., St. Petersburg, 2010).

    Google Scholar 

  22. V. Giordano and E. Rubiola, Lect. Notes Phys. 550, 175 (2000).

    Article  ADS  Google Scholar 

  23. W. J. Riley, Handbook of Frequency Stability Analysis (Nat. Inst. Standards Technology, Washington, 2008).

    Google Scholar 

  24. A. I. Ryabinkov, A. A. Kaurov, and A. D. Kaminker, Astrophys. Space Sci. 344, 210 (2013).

    ADS  Google Scholar 

  25. I. Backus, D. Mitra, and J. M. Rankin, Mon. Not. R. Astron. Soc. 404, 30 (2010).

    ADS  Google Scholar 

  26. A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers, Science 329, 408 (2010).

    Article  ADS  Google Scholar 

  27. J. L. Herfindal and M. J. Rankin, Mon. Not. R. Astron. Soc. 380, 430 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bozhokin.

Additional information

Original Russian Text © S.V. Bozhokin, I.M. Suslova, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 12, pp. 26–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozhokin, S.V., Suslova, I.M. Double wavelet transform of frequency-modulated nonstationary signal. Tech. Phys. 58, 1730–1736 (2013). https://doi.org/10.1134/S1063784213120074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213120074

Keywords

Navigation