Skip to main content
Log in

Application of the averaging method to calculation of propagation of electromagnetic radiation through thin films with different conductivities

  • Electrodynamics and Wave Propagation
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The averaging method is used for calculation of the reflection and transmission coefficients of a 1D longitudinal electromagnetic wave and a 1D transverse electromagnetic wave that are incident along the normal onto a plane-parallel plate. The averaged electrodynamic boundary conditions are derived for an arbitrary conductivity of the plate. It is demonstrated that the averaging method enables one to simplify the calculations and resulting expressions owing to a decrease in the order of the system of equations and elimination of trigonometric functions. The error of this method is several percent for planes with thicknesses up to 0.35 of the wavelength in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. D. Khvol’son, Course of Physics (Gosizdat RSFSR, Berlin, 1923), Vol. 2 [in Russian].

    Google Scholar 

  2. G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969; Nauka, Moscow, 1970).

    Google Scholar 

  4. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973; Academic, New York, 1980).

    Google Scholar 

  5. R. W. Pohl, Einführung in die Optik (Springer-Verlag, Berlin, 1943; Gostekhteorizdat, Moscow, 1947).

    Google Scholar 

  6. A. E. Kaplan, Radiotekh. Elektron. (Moscow) 11, 1781 (1964).

    Google Scholar 

  7. R. Hasegava, Phys. Rev. Lett. 28, 1376 (1972).

    Article  Google Scholar 

  8. A. R. Melnyk and M. J. Harrison, Phys. Rev. B 2, 835 (1970).

    Article  Google Scholar 

  9. G. Marchal, P. Mangin, and C. Janot, Thin Solid Films 23(1), 17 (1974).

    Article  Google Scholar 

  10. J. D. Adam, Proc. IEEE 76, 159 (1988).

    Article  Google Scholar 

  11. W. C. Ishak, Proc. IEEE 76, 171 (1988).

    Article  Google Scholar 

  12. A. K. Sarychev, D. J. Bergman, and Y. Yagil, Phys. Rev. B 51, 5366 (1995).

    Article  Google Scholar 

  13. R. Levy-Nathansohn and D. J. Bergman, Phys. Rev. B 55, 5425 (1997).

    Article  Google Scholar 

  14. I. V. Antonets, L. N. Kotov, V. G. Shavrov, and V. I. Scheglov, in Functional Materials (Book of Abstracts of the Int. Conf., Crimea, Ukraine, Oct. 6–11, 2003) (Kharkov, 2003), p. 115.

  15. I. V. Antonets, L. N. Kotov, S. V. Nekipelov, et al., Radiotekh. Elektron. (Moscow) 49, 1243 (2004) [J. Commun. Technol. Electron. 49, 1164 (2004)].

    Google Scholar 

  16. I. V. Antonets, L. N. Kotov, S. V. Nekipelov, et al., in Proc. XII Int. Conf. on Spin Electronics and Gyrovector Electromagnetics (UNTs-1 MEI (TU), Moscow, 2003), p. 642.

    Google Scholar 

  17. I. V. Antonets, L. N. Kotov, S. V. Nekipelov, and E. A. Golubev, Zh. Tekh. Fiz. 74(3), 24 (2004) [Tech. Phys. 49, 306 (2004)].

    Google Scholar 

  18. I. V. Antonets, L. N. Kotov, S. V. Nekipelov, and E. N. Karpushov, Zh. Tekh. Fiz. 74(11), 102 (2004) [Tech. Phys. 49, 1496 (2004)].

    Google Scholar 

  19. M. I. Kontorovich and A. S. Cherepanov, Radiotekh. Elektron. (Moscow) 30, 1543 (1985).

    Google Scholar 

  20. M. I. Oksanen, S. A. Tretyakov, and I. V. Lindell, J. Electromagn. Waves Appl. 4, 613 (1990).

    Google Scholar 

  21. M. I. Kontorovich and S. A. Tret’yakov, Radiotekh. Elektron. (Moscow) 31, 1110 (1986).

    Google Scholar 

  22. S. A. Tretyakov, A. S. Cherepanov, and M. I. Oksanen, Radio Sci. 26, 523 (1991).

    Google Scholar 

  23. V. T. Erofeenko, Radiotekh. Elektron. (Moscow) 42, 530 (1997) [J. Commun. Technol. Electron. 42, 487 (1997)].

    Google Scholar 

  24. V. T. Erofeenko and S. S. Kruglei, Radiotekh. Elektron. (Moscow) 44, 1133 (1999) [J. Commun. Technol. Electron. 44, 1051 (1999)].

    Google Scholar 

  25. T. B. A. Senior and J. Volakis, Approximate Boundary Conditions in Electromagnetics (IEE, London, 1995).

    MATH  Google Scholar 

  26. D. J. Heppe and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics (Taylor and Francis, Washington, DC, 1995).

    Google Scholar 

  27. D. Ya. Khaliullin and S. A. Tret’yakov, Radiotekh. Elektron. (Moscow) 43, 16 (1998) [J. Commun. Technol. Electron. 43, 12 (1998)].

    Google Scholar 

Download references

Authors

Additional information

Original Russian Text © I.V. Antonets, L.N. Kotov, V.G. Shavrov, V.I. Shcheglov, 2007, published in Radiotekhnika i Elektronika, 2007, Vol. 52, No. 4, pp. 403–414.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonets, I.V., Kotov, L.N., Shavrov, V.G. et al. Application of the averaging method to calculation of propagation of electromagnetic radiation through thin films with different conductivities. J. Commun. Technol. Electron. 52, 379–389 (2007). https://doi.org/10.1134/S106422690704002X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422690704002X

PACS numbers

Navigation