Skip to main content
Log in

Capacitive Properties of Metal–Insulator–Semiconductor Systems Based on an HgCdTe nBn Structure Grown by Molecular Beam Epitaxy

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The capacitance–voltage (CV) curves of metal–insulator–semiconductor (MIS) systems based on an HgCdTe nBn structure grown by molecular-beam epitaxy on GaAs(013) substrates were studied for the first time in a wide range of frequencies and temperatures. The electron concentration in the near-surface film layer was determined by capacitive measurements and is close to the indium dopant concentration. It was demonstrated that the CV characteristics of MIS systems have a high-frequency behavior in a wide range of measurement conditions, and the product of the differential resistance of the space-charge region and the electrode area in the strong inversion mode is as high as 40 kΩ cm2. It was found that the capacitance of the MIS system in the accumulation mode decreases after irradiation at 0.91 μm. This effect may be attributed to the transformation of the band diagram of an abrupt heterojunction triggered by changes in the charge state of defects under irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. Rogalski, Infrared detectors (CRC, Taylor & Francis Group, New York, 2011).

    Google Scholar 

  2. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications (Wiley, Chichester, 2011).

    Google Scholar 

  3. M. A. Kinch, J. Electron. Mater. 44, 2969 (2015).

    Article  Google Scholar 

  4. S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).

    Article  Google Scholar 

  5. N. D. Akhavan, G. Jolley, G. A. Umana-Membreno, et al., IEEE Trans. Electron. Devices 62, 722 (2015).

    Article  Google Scholar 

  6. A. V. Voitsekhovskii and D. I. Gorn, Priklad. Fiz., No. 4, 83 (2016).

  7. A. Evirgen, J. Abautret, J. P. Perez, et al., Electron. Lett. 50, 1472 (2014).

    Article  Google Scholar 

  8. M. Kopytko, A. Keblowski, W. Gawron, et al., Opto-Electron. Rev. 21, 402 (2013).

    Article  Google Scholar 

  9. A. M. Itsuno, J. D. Phillips, and S. Velicu, Appl. Phys. Lett. 100, 161102 (2012).

    Article  Google Scholar 

  10. P. Klipstein, O. Klin, S. Grossman, et al., Proc. SPIE 7608, 76081 (2010).

    Article  Google Scholar 

  11. D. R. Rhiger, E. P. Smith, B. P. Kolasa, et al., J. Electron. Mater. 45, 4646 (2016).

    Article  Google Scholar 

  12. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al. Izv. Vyssh. Uchebn. Zaved., Fiz. 57 (5), 62 (2014).

    Google Scholar 

  13. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Infrared Phys. Technol. 87, 129 (2017).

    Article  Google Scholar 

  14. J. Grosvalet and C. Jund, IEEE Trans. Electron. Devices 14, 777 (1967).

    Article  Google Scholar 

  15. L. K. Orlov, Zs. J. Horvath, A. V. Potapov, M. L. Orlov, S. V. Ivin, V. I. Vdovin, E. A. Steinman, and V. M. Fomin, Phys. Solid State 46, 2069 (2004).

    Google Scholar 

  16. A. V. Voitsekhovskii, S. N. Nesmelov, and S. M. Dzyadukh, J. Electron. Mater. 47, 2694 (2018).

    Article  Google Scholar 

  17. A. V. Voitsekhovskii, S. N. Nesmelov, S. M. Dzyadukh, et al., Russ. Phys. J. 54 (3), 263 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported financially by the Russian Foundation for Basic Research and the Administration of the Tomsk region (project no. 18-43-700005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Voitsekhovskii or S. A. Dvoretsky.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitsekhovskii, A.V., Nesmelov, S.N., Dzyadukh, S.M. et al. Capacitive Properties of Metal–Insulator–Semiconductor Systems Based on an HgCdTe nBn Structure Grown by Molecular Beam Epitaxy. J. Commun. Technol. Electron. 64, 289–293 (2019). https://doi.org/10.1134/S1064226919030197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919030197

Keywords:

Navigation