Skip to main content
Log in

Mineralization of organic matter and the carbon sequestration capacity of zonal soils

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The susceptibility of soil organic matter (SOM) to mineralization decreases in the following sequence of zonal soils: tundra soil > soddy-podzolic soil > gray forest soil > chestnut soil > dark chestnut soil > chernozem. The content of potentially mineralizable organic matter in the plowed soils is 1.9–3.9 times lower than that in their virgin analogues. The highest soil carbon sequestration capacity (SCSC) is typical of the leached chernozems, and the lowest SCSC is typical of the tundra soil. Taking into account the real soil temperatures and the duration of the warm season, the SCSC values decrease in the following sequence: leached chernozem > dark chestnut soil > chestnut soil ≥ tundra soil > gray forest soil > soddy-podzolic soil. Arable soils are characterized by higher SCSC values in comparison with their virgin analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Ganzhara, “A Conceptual Model of Humification,” Pochvovedenie, No. 9, 1075–1080 (1997) [Eur. Soil Sci. 30 (9), 957–962 (1997)].

  2. V. N. Dimo, Temperature Regime of Soils of the USSR (Kolos, Moscow, 1972) [in Russian].

    Google Scholar 

  3. G. A. Zavarzin and V. N. Kudeyarov, “Soil as the Main Source of Carbon Dioxide and an Organic Carbon Sink in the Territory of Russia,” Vestn. Ross. Akad. Nauk 76(1), 14–29 (2006).

    Google Scholar 

  4. L. A. Ivannikova, “A Method for Determining the Mineralization of Soil Organic Matter from the Amount of the Produced CO2,” in Methods of Studying Soil Organic Matter (Rossel’khozakademiya, Moscow, 2005), pp. 376–385 [in Russian].

    Google Scholar 

  5. V. N. Kudeyarov, “A Procedure for Determining the Total Carbon Pools in Soils and Plants,” Agrokhimiya, No. 11, 125–128 (1972).

  6. V. N. Kudeyarov, “The Role of Soils in the Carbon Cycle,” Pochvovedenie, No. 8, 915–923 (2005) [Eur. Soil Sci. 38 (8), 808–815 (2005)].

  7. V. N. Kudeyarov and I. N. Kurganova, “Respiration of Russian Soils: Database Analysis, Long-Term Monitoring, and General Estimates,” Pochvovedenie, No. 9, 1112–1121 (2005) [Eur. Soil Sci. 38 (9), 983–992 (2005)].

  8. D. S. Orlov and O. N. Biryukova, “Organic Carbon Pools in Soils of the Russian Federation,” Pochvovedenie, No. 1, 21–32 (1995).

  9. D. S. Orlov and O. N. Biryukova, “The Stability of Soil Organic Compounds and the Emission of Greenhouse Gases into the Atmosphere,” Pochvovedenie, No. 7, 783–793 (1998) [Eur. Soil Sci. 31 (7), 711–720 (1998)].

  10. D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Revised System of the Humus Status Parameters of Soils and Their Genetic Horizons,” Pochvovedenie, No. 8, 918–926 (2004) [Eur. Soil Sci. 37 (8), 798–805 (2004)].

  11. D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Real and Apparent Losses of Organic Matter by the Soils of the Russian Federation,” Pochvovedenie, No. 2, 197–207 (1996) [Eur. Soil Sci. 29 (2), 174–183 (1996)].

  12. V. M. Semenov, L. A. Ivannikova, and T. V. Kuznetsova, “Laboratory Diagnostics of the Biological Quality of Soil Organic Matter,” in Methods of Studying Soil Organic Matter (Rossel’khozakademiya, Moscow, 2005), pp. 214–230 [in Russian].

    Google Scholar 

  13. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, and N. A. Semenova, “The Role of Plant Biomass in the Formation of the Active Pool of Soil Organic Matter,” Pochvovedenie, No. 11, 1350–1359 (2004) [Eur. Soil Sci. 37 (11), 1196–1204 (2004)].

  14. V. M. Semenov, I. K. Kravchenko, L. A. Ivannikova, et al., “Experimental Determination of the Active Organic Matter Content in Some Soils of Natural and Agricultural Ecosystems,” Pochvovedenie, No. 3, 282–292 (2006) [Eur. Soil Sci. 39 (3), 251–260 (2006)].

  15. V. M. Semenov and A. K. Khodzhaeva, “Agroecological Functions of Plant Residues in the Soil,” Agrokhimiya, No. 7, 63–81 (2006).

  16. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, et al., Simulation of Soil Organic Matter Dynamics (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  17. S. Ya. Trofimov, “On the Dynamics of Organic Matter in Soils,” Pochvovedenie, No. 9, 1081–1086 (1997) [Eur. Soil Sci. 30 (9), 963–968 (1997)].

  18. A. D. Fokin and V. V. Idei, “Dokuchaev’s Ideas and the Problems of Organic Matter,” Pochvovedenie, No. 2, 187–196 (1996) [Eur. Soil Sci. 29 (2), 165–173 (1996)].

  19. A. D. Fokin, “The Role of Soil Organic Matter in the Functioning of Natural and Agricultural Ecosystems,” Pochvovedenie, No. 4, 40–45 (1994).

  20. T.-H. Anderson and K. H. Domsch, “The Metabolic Quotient for CO2 (qCO2) as a Specific Activity Parameter to Assess the Effect of Environmental Conditions, Such as pH, on the Microbial Biomass of Forest Soils,” Soil Biol. Biochem. 25, 393–395 (1993).

    Article  Google Scholar 

  21. V. L. Bailey, J. L. Smith, and H. Bolton, Jr., “Fungal-to-Bacterial Ratios in Soils for Enhanced C Sequestration,” Soil Biol. Biochem. 34, 997–1007 (2002).

    Article  Google Scholar 

  22. C. J. Bronick and R. Lal, “Soil Structure and Management: a Review,” Geoderma 124, 3–22 (2005).

    Article  Google Scholar 

  23. H. P. Collins, E. T. Elliott, K. Paustian, et al., “Soil Carbon Pools and Fluxes in Long-Term Corn Belt Agroecosystems,” Soil Biol. Biochem. 32, 157–168 (2000).

    Article  Google Scholar 

  24. M-M. Couteaux, P. Bottner, J. M. Anderson, et al., “Decomposition of 13C-Labelled Standard Plant Material in a Latitudinal Transect of European Coniferous Forests: Differential Impact of Climate on the Decomposition of Soil Organic Matter Compartments,” Biogeochemistry 54, 147–170 (2001).

    Article  Google Scholar 

  25. E. A. Davidson, E. Belk, and R. D. Boone, “Soil Water Content and Temperature as Independent or Confounded Factors Controlling Soil Respiration in a Temperate Mixed Forest,” Global Change Biol. 4, 217–227 (1998).

    Article  Google Scholar 

  26. R. L. Desjardins, W. Smith, B. Grant, et al., “Management Strategies to Sequester Carbon in Agricultural Soils and to Mitigate Greenhouse Gas Emissions,” Clim. Change 70, 283–297 (2005).

    Article  Google Scholar 

  27. K. Ekschmitt, M. Liu, S. Vetter, et al., “Strategies Used by Soil Biota to Overcome Soil Organic Matter Stability — Why Is Dead Organic Matter Left over in the Soil?” Geoderma 128, 167–176 (2005).

    Article  Google Scholar 

  28. A. J. Franzluebbers, R. L. Haney, C. W. Honeycutt, et al., “Climatic Influences on Active Fractions of Soil Organic Matter,” Soil Biol. Biochem. 33, 1103–1111 (2001).

    Article  Google Scholar 

  29. A. J. Franzluebbers, R. L. Haney, C. W. Honeycutt, et al., “Flush of Carbon Dioxide Following Rewetting of Dried Soils Relates to Active Organic Pools,” Soil Sci. Soc. Am. J. 64, 613–623 (2000).

    Google Scholar 

  30. A. Freibauer, M. D. A. Rounsevell, P. Smith, and J. Verhagen, “Carbon Sequestration in the Agricultural Soils of Europe,” Geoderma 122, 1–23 (2004).

    Article  Google Scholar 

  31. J. B. Gaudinski, S. E. Trumbore, E. A. Davidson, and Sh. Zheng, “Soil Carbon Cycling in a Temperate Forest: Radiocarbon-Based Estimates of Residence Times, Sequestration Rates and Partitioning of Fluxes,” Biogeochemistry 51, 33–69 (2000).

    Article  Google Scholar 

  32. J. M. Gonzalez and D. A. Laird, “Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues,” Soil Sci. Soc. Am. J. 67, 1715–1720 (2003).

    Google Scholar 

  33. J. Hassink, “Density Fractions of Macroorganic Matter and Microbial Biomass as Predictors of C and N Mineralization,” Soil Biol. Biochem. 27, 1099–1108 (1995).

    Article  Google Scholar 

  34. I. Hannam, “International and National Aspects of a Legislative Framework to Manage Soil Carbon Sequestration,” Clim. Change 65, 365–387 (2004).

    Article  Google Scholar 

  35. J. Hassink, “The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles,” Plant Soil 191, 77–87 (1997).

    Article  Google Scholar 

  36. H. H. Janzen, “The Soil Carbon Dilemma: Shall We Hoard It or Use It?” Soil Biol. Biochem. 38, 419–424 (2006).

    Article  Google Scholar 

  37. T. Katterer, M. Reichstein, O. Andren, and A. Lomander, “Temperature Dependence of Organic Matter Decomposition: a Critical Review Using Literature Data Analyzed with Different Models,” Biol. Fertil. Soils 27, 258–262 (1998).

    Article  Google Scholar 

  38. A. Y. Y. Kong, J. Six, D. C. Bryant, et al., “The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems,” Soil Sci. Soc. Am. J. 69, 1078–1085 (2005).

    Google Scholar 

  39. R. Lal, “Soil Carbon Sequestration in India,” Clim. Change 65, 277–296 (2004).

    Article  Google Scholar 

  40. R. Lal, “Soil Carbon Sequestration to Mitigate Climate Change,” Geoderma 123, 1–22 (2004).

    Article  Google Scholar 

  41. J. Leifeld and I. Kogel-Knabner, “Soil Organic Matter Fractions as Early Indicators for Carbon Stock Changes under Different Land-Use?” Geoderma 124, 143–155 (2005).

    Article  Google Scholar 

  42. E. J. Lundquist, L. E. Jackson, K. M. Scow, and C. Hsu, “Changes in Microbial Biomass and Community Composition, and Soil Carbon and Nitrogen Pools after Incorporation of Rye into Three California Agricultural Soils,” Soil Biol. Biochem. 31, 221–236 (1999).

    Article  Google Scholar 

  43. D. A. Martens, “Plant Residue Biochemistry Regulates Soil Carbon Cycling and Carbon Sequestration,” Soil Biol. Biochem. 32, 361–369 (2000).

    Article  Google Scholar 

  44. T. Muller and H. Hoper, “Soil Organic Matter Turnover as a Function of the Soil Clay Content: Consequences for Model Applications,” Soil Biol. Biochem. 36, 877–888 (2004).

    Article  Google Scholar 

  45. B. Nicolardot, J. A. E. Molina, and M. R. Allard, “C and N Fluxes between Pools of Soil Organic Matter: Model Calibration with Long-Term Incubation Data,” Soil Biol. Biochem. 26, 235–243 (1994).

    Article  Google Scholar 

  46. X. Niu and S. W. Duiker, “Carbon Sequestration Potential by Afforestation of Marginal Agricultural Land in the Midwestern U.S,” For. Ecol. Manage. 223, 415–427 (2006).

    Article  Google Scholar 

  47. E. A. Paul, S. J. Morris, R. T. Conant, and A. F. Plante, “Does the Acid Hydrolysis-Incubation Method Measure Meaningful Soil Organic Carbon Pools?,” Soil Sci. Soc. Am. J. 70, 1023–1035 (2006).

    Article  Google Scholar 

  48. K. Paustian, J. Six, E. T. Elliott, and H. W. Hunt, “Management Options for Reducing CO2 Emissions from Agricultural Soils,” Biogeochemistry 48, 147–163 (2000).

    Article  Google Scholar 

  49. A. Piccolo, R. Spaccini, R. Nieder, and J. Richter, “Sequestration of a Biologically Labile Organic Carbon in Soils by Humified Organic Matter,” Clim. Change 67, 329–343 (2004).

    Article  Google Scholar 

  50. H. R. Schulten and P. Leinweber, “New Insight into Organic-Mineral Particles: Composition, Properties, and Models of Molecular Structure,” Biol. Fertil. Soils 30, 399–432 (2000).

    Article  Google Scholar 

  51. M. Schnitzer, D. F. E. McArthur, H.-R. Schulten, et al., “Long-Term Cultivation Effects on the Quantity and Quality of Organic Matter in Selected Canadian Prairie Soils,” Geoderma 130, 141–156 (2006).

    Article  Google Scholar 

  52. J. Six, R. T. Conant, E. A. Paul, and K. Paustian, “Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils,” Plant Soil 241, 155–176 (2002).

    Article  Google Scholar 

  53. J. Six, E. T. Elliott, K. Paustian, and J. W. Doran, “Aggregation and Soil Organic Matter Accumulation in Cultivated and Nature Grassland Soils,” Soil Sci. Soc. Am. J. 62, 1367–1377 (1998).

    Google Scholar 

  54. J. Six, S. D. Frey, R. K. Thiet, and K. M. Batten, “Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems,” Soil Sci. Soc. Am. J. 70, 555–569 (2006).

    Article  Google Scholar 

  55. P. Sollins, P. Homann, and B. A. Caldwell, “Stabilization and Destabilization of Soil Organic Matter: Mechanisms and Controls,” Geoderma 74, 65–105 (1996).

    Article  Google Scholar 

  56. R. Spaccini, A. Piccolo, P. Conte, et al., “Increased Soil Organic Carbon Sequestration through Hydrophobic Protection by Humic Substances,” Soil Biol. Biochem. 34, 1839–1851 (2002).

    Article  Google Scholar 

  57. M. Sperow, M. Eve, and K. Paustian, “Potential Soil C Sequestration on U.S. Agricultural Soils,” Clim. Change 57, 319–339 (2003).

    Article  Google Scholar 

  58. V. Stolbovoi, “Carbon in Russian Soils,” Clim. Change 55, 131–156 (2002).

    Article  Google Scholar 

  59. R. S. Swift, “Sequestration of Carbon by Soil,” Soil Sci. 166, 858–871 (2001).

    Article  Google Scholar 

  60. J. K. Whalen, P. J. Bottomley, and D. D. Myrold, “Carbon and Nitrogen Mineralization from Light-and Heavy-Fraction Additions to Soil,” Soil Biol. Biochem. 32, 1345–1352 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Semenov.

Additional information

Original Russian Text © V.M. Semenov, L.A. Ivannikova, T.V. Kuznetsova, N.A. Semenova, A.S. Tulina, 2008, published in Pochvovedenie, 2008, No. 7, pp. 819–832.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, V.M., Ivannikova, L.A., Kuznetsova, T.V. et al. Mineralization of organic matter and the carbon sequestration capacity of zonal soils. Eurasian Soil Sc. 41, 717–730 (2008). https://doi.org/10.1134/S1064229308070065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229308070065

Keywords

Navigation