Skip to main content
Log in

Chemical aspects of uranium behavior in soils: A review

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Bandman and B. A. Ivin, et al., Harmful Chemical Substances: Inorganic Compounds (Khimiya, Leningrad, 1988) [in Russian].

    Google Scholar 

  2. I. S. Burtsev and S. K. Stepanova, et al., “Experience in the Survey of Underground Nuclear Explosions and Uranium Ore Dumps in Yakutia,” in Radiation Safety of the Republic of Sakha (Yakutia) (Yakutsk, 2005), pp. 56–67 [in Russian].

  3. Yu. N. Vodyanitskii, Iron Compounds and Their Role in Soil Conservation (Moscow, 2010) [in Russian].

  4. Yu. N. Vodyanitskii, N. V. Kosareva, and A. T. Savichev, “Contents of Lanthanides (Y, La, Ce, Pr, Nd, Sm) and Actinides (Th, U) in Soils of the Khibiny-Lovozero Province,” Byul. Pochv. Inst., No. 65, 75–86 (2010).

  5. Hydrogenic Uranium Fields, Ed. by A. I. Perel’man (Moscow, 1980) [in Russian].

  6. State Report on the State and Protection of the Environment in Russian Federation in 2007 (Moscow, 2008) [in Russian].

  7. Chemistry of the Elements, 2nd ed., Ed. by N. N. Greenwood and A. Earnshaw (Elsevier, 1997).

  8. O. A. Doinikova, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Moscow, 2005).

  9. L. S. Evseeva, A. I. Perel’man, and K. E. Ivanov, Uranium Geochemistry in the Hypergenesis Zone (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  10. L. V. Zhornyak, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Tomsk, 2009).

  11. V. V. Ivanov, Ecological Geochemistry of the Elements: Rare of Elements (Ekologiya, Moscow, 1997) [in Russian].

    Google Scholar 

  12. L. I. Inisheva, M. V. Shurova, G. V. Larina, et al., “Ecological Monitoring of Bogs in Western Siberia and Altai Mountains,” in Current Problems of Soil Contamination: the III International Scientific Conference, Moscow, Russia, 2010 (Moscow, 2010), pp. 354–358 [in Russian].

  13. V. V. Koval’skii, Geochemical Ecology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  14. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, (CRC, Boca Raton, 1985).

    Google Scholar 

  15. I. N. Lyubimova and T. I. Borisochkina, Effect of Potentially Hazardous Chemical Elements Present in Phosphogypsum on the Environment (Moscow, 2007) [in Russian].

  16. S. Yu. Malenkina and A. T. Savichev, “Geochemistry of Mesozoic Phosphorite Uranium in the Central East-European Platform,” Geol. Razved., No. 4, 54–58 (1994).

  17. V. A. Petrov, V. V. Poluektov, O. V. Andreeva, et al., “Uranium Migration and Geochemical Barriers in the Aeration Zone of the Tulukuev Field (Southeastern Transbaikalia),” in Geochemistry of the Biosphere (Moscow, 2006), pp. 290–292 [in Russian].

  18. A. I. Perel’man, “Landscape Geochemistry and Scientific Problems of Atomic Industry,” Vestn. Mosk. Univ., Ser. 5: Geogr., 22–27 (1996).

  19. A. I. Perel’man and N. S. Kasimov, Landscape Geochemistry (Astreya-2000, Moscow, 1999) [in Russian].

    Google Scholar 

  20. A. V. Puzanov, O. A. El’chininova, and T. D. Rozhdestvenskaya, “Radionuclides in Soils of Northern and Central Altai,” in Geochemistry of the Biosphere (Moscow, 2006), pp. 299–301 [in Russian].

  21. A. E. Fersman, Geochemistry (Akad. Nauk SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  22. H. Hawkes and J. Webb, Geochemistry in Mineral Exploration (Harper and Row, New York, 1962).

    Google Scholar 

  23. A. P. Chevychelov and P. I. Sobakin, “Radioactive Contamination of Cryogenic Soils with 238U in the Zone of Uranium Fields of the Central Aldan (Southern Yakutia),” in Current Problems of Soil Pollution: the II International Scientific Conference, Moscow, Russia, 2007 (Moscow, 2007), pp. 261–264 [in Russian].

  24. I. I. Shuktumova, N. A. Titaeva, A. I. Taskaeva, and R. M. Aleksakhin, “Behavior of 238U, 232Th, and 226Ra in Mountain-Tundra Soils,” Pochvovedenie, No. 8, 49–53 (1983).

  25. T. Allard, P. Ildefonse, C. Beaucaire, and G. Calas, “Structural Chemistry of Uranium Associated with Si, Al, Fe Gels in a Granitic Uranium Mine,” Ghem. Geol. 158, 81–103 (1999).

    Article  Google Scholar 

  26. S. Audry, G. Blanc, J. Schafer, et al., “Early Diagenesis of Trace Metals (Cd, Cu, Co, Ni, U, Mo, V) in the Freshwater Reaches of Macrotidal Estuary,” Geochim. Cosmochim. Acta 70, 2264–2282 (2006).

    Article  Google Scholar 

  27. J. P. Bargar, R. Reitmeyer, and J. A. Davis, “Spectroscopic Confirmation of Uranium(VI)-Carbonate Adsorption Complexes on Hematite,” Environ. Sci. Technol. 33, 2481–2484 (1999).

    Article  Google Scholar 

  28. C. E. Barnes and J. K. Cochran, “Uranium Geochemistry in Estuarine Sediments: Control on Removal and Realize Processes,” Geochim. Cosmochim. Acta 57, 555–569 (1993).

    Article  Google Scholar 

  29. T. Behrends and P. Van Cappelen, “Competition between Enzymatic and Abiotic Reduction of Uranium(VI) under Iron Reducing Condition,” Chem. Geol. 220, 315–327 (2005).

    Article  Google Scholar 

  30. G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, “Speciation of Uranium in Seepage Waters of a Mine Tailing Pile Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS),” Radiochim. Acta 74, 87–91 (1996).

    Google Scholar 

  31. G. Bernhard, G. Geipel, V. Brendler, and H. Nitsche, “Uranium Speciation in Water of Different Uranium Mining Areas,” J. Alloys Compd. 271–173, 201–205 (1998).

    Article  Google Scholar 

  32. D. W. Blowes, C. J. Ptacek, S. G. Benner, et al., “Treatment of Inorganic Contaminants Using Permeable Reactive Barriers,” J. Contam. Hydrol. 45, 123–137 (2000).

    Article  Google Scholar 

  33. B. C. Bostick, S. Fendorf, M. O. Barnett, et al., “Uranyl Surface Complexes Formed on Subsurface Media from DOE Facilities,” Soil Sci. Soc. Am. J. 66, 99–108 (2002).

    Article  Google Scholar 

  34. I. J. Brett and J. F. Banfield, “Microbial Communities in Acid Mine Drainage,” FEMS Microbiol. Ecol. 44, 139–152 (2003).

    Article  Google Scholar 

  35. C. Bruggeman and N. Maes, “Uptake of Uranium(VI) by Pyrite under Boom Clay Conditions: Influence of Dissolved Organic Carbon,” Environ. Sci. Technol. 44, 4210–4216 (2010).

    Article  Google Scholar 

  36. J. Bruno, L. Duro, and M. Grive, “The Applicability of Thermodynamic Geochemical Models to Simulate Trace Elements Behavior in Natural Waters. Lessons Learned from Natural Analogue Studies,” Chem. Geol. 190, 1–4 (2002).

    Article  Google Scholar 

  37. K. J. Cantrell, D. I. Kaplan, and T. W. Wietsma, “Zero-Valent Iron for the in-Situ Remediation of Selected Metals in Groundwater,” Hazard. Mater 42, 201–212 (1995).

    Article  Google Scholar 

  38. J. G. Catalano and G. E. Brown, Jr., “Analysis of Uranyl-Bearing Phases by EXAFS Spectroscopy: Interferences, Multiple Scattering, Accuracy of Structural Parameters, and Spectral Interferences,” Am. Mineral. 89, 1004–1921 (2004).

    Google Scholar 

  39. S. Chakraborty, F. Favre, D. Banerjee, et al., “U(VI) Sorption and Reduction by Fe(II) Sorbed on Montmorilonite,” Environ. Sci. Technol. 44, 3779–3785 (2010).

    Article  Google Scholar 

  40. D. P. Chandler, A. Kukthin, R. Mokhiber, et al., “Monitoring Microbial Community Structure and Dynamics during in-Situ U(VI) Bioremediation with a Field-Portable Microarray Analysis System,” Environ. Sci. Technol. 44, 5516–5522 (2010).

    Article  Google Scholar 

  41. R. S. Cutting, V. S. Coker, N. D. Telling, et al., “Optimizing Cr(VI) and Tc(VII) Remediation through Nanoscale Biomineral Engineering,” Environ. Sci. Technol. 44, 2577–2584 (2010).

    Article  Google Scholar 

  42. W. A. De Jong, E. Apra, T. L. Windus, et al., “Complexation of the Carbonate, Nitrate, and Acetate Anions with the Uranyl Dication: Density Functional Studies with Relativistic Effective Core Potentials,” J. Phys. Chem. 110, 11568–11577 (2005).

    Google Scholar 

  43. A. J. Dent, D. F. Ramsay, and S. W. Swanton, “An EXAFS Study of Uranyl Ion in Solution and Sorbed onto Silica and Montmorillonite Clay Colloids,” J. Colloid Interface Sci. 150, 45–60 (1992).

    Article  Google Scholar 

  44. M. C. Duff, J. U. Coughlin, and D. B. Hunter, “Uranium Coprecipitation with Iron Oxide Minerals,” Geochim. Cosmochim. Acta 66, 3533–3547 (2002).

    Article  Google Scholar 

  45. M. P. Elless, M. E. Timpson, and S. Y. Lee, “Concentration of Uranium Particulates from Soils Using a Novel Density-Separation Technique,” Soil Sci. Soc. Am. J. 61, 626–631 (1997).

    Article  Google Scholar 

  46. M. P. Elless and S. Y. Lee, “Radionuclide-Contaminated Soils: A Mineralogical Perspective for Their Remediation,” in Soil Mineralogy with Environmental Application SSSA Series, No. 7 (Madison, 2002), pp. 737–763.

  47. A. V. Filgueiras, I. Lavilla, and C. Bendicho, “Chemical Sequential Extraction for Metal Partitioning in Environmental Solid Samples,” J. Environ. Monit. 4, 823–857 (2002).

    Article  Google Scholar 

  48. K. E. Fletcher, M. I. Boyanov, S. H. Thomas, et al., “U(VI) Reduction to Mononuclear U(VI) by Desulfitobacterium Species,” Environ. Sci. Technol. 44, 4705–4709 (2010).

    Article  Google Scholar 

  49. A. J. Francis, C. J. Dodge, A. W. Rose, and A. J. Ramirez, “Aerobic and Anaerobic Dissolution of Toxic Metals from Coal Wastes: Mechanism of Action,” Environ. Sci. Technol. 23, 435–441 (1989).

    Article  Google Scholar 

  50. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, et al., “Reduction of U(VI) in Goethite (α-FeOOH) Suspensions by a Dissimilatory Metal-Reducing Bacterium,” Geochim. Cosmochim. Acta 64, 3085–3098 (2000).

    Article  Google Scholar 

  51. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, et al., “Reduction of Tc4− by Sediment-Associated Biogenic Fe(II),” Geochim. Cosmochim. Acta 68, 3171–3187 (2004).

    Article  Google Scholar 

  52. J. K. Fredrickson, J. M. Zachara, D. W. Kennedy, et al., “Influence of Mn Oxide on the Reduction of Uranium(VI) by the Metal-Reducing Bacterium Shewanella putrefaciens,” Geochim. Cosmochim. Acta 66, 3247–3262 (2002).

    Article  Google Scholar 

  53. A. Froideval, M. Del Nero, C. Gaillard, et al., “Uranium Sorption Species at Low Coverage on Al Hydroxide: TRILFS and XAFS Studies,” Geochim. Cosmochim. Acta 70, 5270–5284 (2006).

    Article  Google Scholar 

  54. Z. I. Gonzalez, M. Krachler, A. K. Cheburkin, and W. Schotyk, “Spatial Distribution of Natural Enrichments of Arsenic, Selenium, and Uranium in Minerotrophic Peatland, Gola di Lago, Canton Ticino, Switzerland,” Environ. Sci. Technol. 40, 6568–6574 (2006).

    Article  Google Scholar 

  55. A. V. Gorbunov, M. V. Frontasyeva, S. F. Gudorina, et al., “Effect of Agricultural Use of Phosphogypsum on Trace Elements in Soils and Vegetation,” Sci. Total Environ. 122, 337–346 (1992).

    Article  Google Scholar 

  56. B. Gu and J. Chen, “Enhanced Microbial Reduction of Cr(VI) and U(VI) by Different Natural Organic Matter Fractions,” Geochim. Cosmochim. Acta 67, 3575–3582 (2003).

    Article  Google Scholar 

  57. K. L. Gulati, M. C. Osval, and K. K. Nagpaul, “Assimilation of Uranium by Wheat and Tomato Plants,” Plant Soil 55, 55–59 (1980).

    Article  Google Scholar 

  58. C. Henning, J. Tutschku, A. Rosenberg, et al., “Comparative EXAFS Investigation of Uranium(VI) and -(IV) Aquo Chloro Complexes in Solution Using a Newly Developed Spectroelectrochemical Cell,” Inorg. Chem. 44, 6655–6661 (2005).

    Article  Google Scholar 

  59. C.-K. D. Hsi and D. Langmuir, “Adsorption of Uranyl onto Ferric Oxyhydroxides: Application of the Surface Complexation Site-Binding Model,” Geochim. Cosmochim. Acta 49, 1931–1941 (1985).

    Article  Google Scholar 

  60. T. A. Hudson, P. G. Allen, L. J. Terminello, et al., “Polarized X-Ray-Absorption Spectroscopy of the Uranyl Ion: Comparison of Experiment and Theory,” J. Phys. Rev. B 54, 156–165 (1996).

    Article  Google Scholar 

  61. E. F. Idiz, D. Carlisle, and I. R. Kaplan, “Interaction between Organic Matter and Trace Metals in a Uranium-Rich Bog, Kern County, California, USA,” Appl. Geochem. 1, 573–590 (1986).

    Article  Google Scholar 

  62. J. D. Istok, J. M. Senko, L. R. Krumholz, et al., “In Situ Bioreduction of Technetium and Uranium in a Nitrate-Contaminated Aquifer,” Environ. Sci. Technol. 38, 468–475 (2004).

    Article  Google Scholar 

  63. H. Kreuzer, “Treating Metal-Contaminated Groundwater-Permeable Reactive Barrier Cleans Superfund Site,” Pollut. Eng. 32, 12–14 (2000).

    Google Scholar 

  64. K. M. Krupka and R. J. Serve, “Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments,” Svanhovd Environmental Centre Report, No. 10379 (Pacific Northwest National Laboratory, Richland, 2002).

    Google Scholar 

  65. D. Langmuir, “Uranium Solution-Mineral Equilibria at Low Temperatures with Application to Sedimentary Ore Deposits,” Geochim. Cosmochim. Acta 42, 547–569 (1978).

    Article  Google Scholar 

  66. K. H. Lieser, S. Quandt-Klenk, and B. Thybusch, “Sorption of Uranyl Compounds on Hydrous Silicon Dioxide,” Radiochim. Acta 57, 45–50 (1992).

    Google Scholar 

  67. E. Liger, L. Charlet, and P. van Cappellen, “Surface Catalysis of Uranium(VI) Reduction by Iron(II),” Geochim. Cosmochim. Acta 63, 2939–2955 (1999).

    Article  Google Scholar 

  68. D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, and E. R. Landa, “Biological Reduction of Uranium,” Nature 350, 413–416 (1991).

    Article  Google Scholar 

  69. W. Luo and B. Gu, “Dissolution and Mobilization of Uranium in a Reduced Sediment by Natural Humic Substances under Anaerobic Condition,” Environ. Sci. Technol. 43, 152–156 (2009).

    Article  Google Scholar 

  70. L. Maya, “Sorbed Uranium(VI) Species on Hydrous Titania, Zirconia, and Silica Gel,” Radiochim. Acta 31, 147–151 (1982).

    Google Scholar 

  71. J. Majzlan and S. C. B. Myneni, “Speciation of Iron and Sulfate in Acid Waters: Aqueous Clusters to Mineral Precipitates,” Environ. Sci. Technol. 39, 188–194 (2005).

    Article  Google Scholar 

  72. J. P. McKinley, J. M. Zachara, C. Liu, et al., “Microscale Controls on the Fate of Contaminant Uranium in the Vadose Zone, Hanford Site,” Geochim. Cosmochim. Acta 70, 1873–1887 (2006).

    Article  Google Scholar 

  73. J. P. McKinley, J. M. Zachara, S. C. Smith, and G. D. Turner, “The Influence of Uranyl Hydrolysis and Multiple Site-Binding Reactions on Adsorption of U(VI) to Montmorillonite,” Clays Clay Miner. 43, 586–598 (1995).

    Article  Google Scholar 

  74. M. M. Michalsen, B. A. Goodman, S. D. Kelly, et al., “Bio-Immobilization of U(VI) and Tc(VII) in Intermediate-Scale Physical Modes of a Bio-Barrier,” Environ. Sci. Technol. 40, 7048–7053 (2006).

    Article  Google Scholar 

  75. H. Moll, G. Geipel, V. Brendler, et al., “Interaction of Uranium(VI) with Silic Acid in Aqueous Solutions Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy,” J. Alloys. Compd. 271–273, 765–768 (1998).

    Article  Google Scholar 

  76. D. E. Morris, C. J. Chisholm-Brause, M. E. Barr, et al., “Optical Spectroscopic Studies of the Sorption of Species on a Reference Smectite,” Geochim. Cosmochim. Acta 58, 3613–3623 (1994).

    Article  Google Scholar 

  77. L. N. Moyes, R. H. Parkman, J. M. Charnock, et al., “Uranium Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Muscovite, and Mackinaite: An X-Ray Absorption Spectroscopy Study,” Environ. Sci. Technol. 34, 1062–1068 (2000).

    Article  Google Scholar 

  78. N. Mukami, M. Sasaki, K. Hachiya, and T. Yasunaga, “Kinetic Study of the Adsorption-Desorption of the Uranyl Ion on a γ-Al2O3 Surface Using the Pressure-Jump Technique,” J. Phys. Chem. 87, 5478–5481 (1983).

    Article  Google Scholar 

  79. T. Murakami, T. Ohnuki, H. Isobe, and T. Sato, “Mobility of Uranium during Weathering,” Am. Mineral. 82, 888–899 (1997).

    Google Scholar 

  80. C. R. Myers and K. H. Nealson, “Bacterial Manganese Reduction and Growth with Manganese Oxide as the Sole Electron Acceptor,” Science 240, 1319–1321 (1988).

    Article  Google Scholar 

  81. N. N. North, S. L. Dollhopf, L. Petrie, et al., “Change in Bacterial Community Structure during in Situ Biostimulation of Subsurface Sediment Cocontaminated with Uranium and Nitrate,” Appl. Environ. Microbiol. 70, 4911–4920 (2004).

    Article  Google Scholar 

  82. E. J. O’Loughlin, S. D. Kelly, and K. M. Kemner, “XAFS Investigation of the Interactions of U(VI) with Secondary Mineralization Products from the Bioreduction of Fe(III) Oxides,” Environ. Sci. Technol. 44, 1656–1661 (2010).

    Article  Google Scholar 

  83. L. Petrie, N. N. North, S. L. Dollhorf, et al., “Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI),” Appl. Environ. Microbiol. 69, 7467–7479 (2003).

    Article  Google Scholar 

  84. J. D. Prikryl, L. Jain, D. R. Turner, and R. T. Pabalan, “Uranium(VI) Sorption Behavior on Silicate Mineral Mixtures,” J. Contam. Hydrol. 47, 241–253 (2001).

    Article  Google Scholar 

  85. V. A. Pulhani, S. Dafauti, A. G. Hedge, et al., “Uptake and Distribution of Natural Radioactivity in Wheat Plants from Soil,” J. Environ. Radioact. 79, 331–346 (2005).

    Article  Google Scholar 

  86. T. Reich, G. Bernhard, G. Geipel, et al., “The Rossendorf Beam Line ROBL — a Dedicated Experimental Station for XAFS Measurements of Actinides and Other Radionuclides,” Radiochim. Acta 88, 633–637 (2000).

    Article  Google Scholar 

  87. T. Reich, H. Moll, M. A. Denecke, et al., “Characterization of Hydrous Uranyl Silicate by EXAFS,” Radiochim. Acta 74, 219–223 (1996).

    Google Scholar 

  88. T. Reich, H. Moll, T. Arnold, et al., “An EXAFS Study of Uranium(VI) Sorption onto Silica Gel and Ferrihydrite,” J. Electron Spectr. Rel. Phen. 96, 237–243 (1998).

    Article  Google Scholar 

  89. G. Redden, J. Bargar, and R. Bencheikh-Latmani, “Citrate Enhanced Uranyl Adsorption in Goethite: An EXAFS Analysis,” J. Colloid Interface Sci. 244, 211–219 (2001).

    Article  Google Scholar 

  90. T. Reich, H. Moll, T. Arnold, et al., “An EXAFS Study of Uranium(VI) Sorption onto Silica Gel and Ferrihydrite,” J. Electron Spectr. Rel. Phen. 96, 237–243 (1998).

    Article  Google Scholar 

  91. R. K. Sani, B. M. Peyton, J. E. Amonnete, and G. G. Geesey, “Reduction of Uranium(VI) under Sulfate-Reduction Conditions in the Presence of Fe(III)-(Hydr)Oxides,” Geochim. Cosmochim. Acta 68, 2639–2648 (2004).

    Article  Google Scholar 

  92. J. M. Senko, J. D. Istok, J. M. Suflita, and L. R. Krumholz, “In-Situ Evidence for Uranium Immobilization and Remobilization,” Environ. Sci. Technol. 36, 1491–1496 (2002).

    Article  Google Scholar 

  93. J. M. Senko, Y. Mohamed, T. A. Dewers, and L. R. Krumholz, “Role for Fe(III) Minerals in Nitrate-Dependent Microbial U(IV) Oxidation,” Environ. Sci. Technol. 39, 2529–2536 (2005).

    Article  Google Scholar 

  94. W. Shotyk, “Review of the Organic Geochemistry of Peat and Peatland Water,” Earth Sci. Rev. 25, 95–167 (1988).

    Article  Google Scholar 

  95. M. D. Taylor, “Accumulation of Uranium in Soils from Impurities in Phosphate Fertilizers,” Landbauf. Volkenrode 57, 133–139 (2007).

    Google Scholar 

  96. B. M. Tebo and A. Y. Obraztsova, “Sulfate-Reducing Bacterium Grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as Electron Acceptors,” FEMS Microbiol. Letts. 162, 193–198 (1998).

    Article  Google Scholar 

  97. H. A. Thompson, G. E. Brown, Jr., and G. A. Pars, “XAFS Spectroscopic Study of Uranyl in Solids and Aqueous Solution,” Am. Mineral. 82, 483–496 (1997).

    Google Scholar 

  98. K.-U. Ulrich, A. Rossberg, H. Foerstendorf, et al., “Molecular Characterization of Uranium(VI) Sorption Complexes on Iron(III)-Rich Acid Mine Water Colloids,” Geochim. Cosmochim. Acta 70, 5469–5487 (2006).

    Article  Google Scholar 

  99. H. Vandenhove, A. Cuypes, M. Van Hees, et al., “Oxidative Stress Reactions Induced in Beans Following Exposure to Uranium,” Plant Physiol. Biochem. 44, 795–805 (2006).

    Article  Google Scholar 

  100. H. Vandenhove, M. Van Hees, J. Wannijn, et al., “Can We Predict Uranium Bioavailability Based on Soil Parameters? Part 2. Soil Solution Uranium Concentrations Is Not a Good Bioavailability Index,” Environ. Poll. 145, 577–586 (2007).

    Article  Google Scholar 

  101. M. Walter, T. Arnold, T. Reich, and G. Bernhard, “Sorption of Uranium(VI) Onto Ferric Oxides in Sulfate-Rich Acid Waters,” Environ. Sci. Technol. 37, 2898–2904 (2003).

    Article  Google Scholar 

  102. M. Wazne, G. P. Korfiatis, and X. Meng, “Carbonate Effects on Hexavalent Uranium Adsorption by Iron Oxyhydroxide,” Environ. Sci. Technol. 37, 3619–3624 (2003).

    Article  Google Scholar 

  103. P. Wersin, M. F. Hochella, Jr., G. Persson, et al., “Interaction between Aqueous Uranium(VI) and Sulfide Minerals: Spectroscopic Evidence for Sorption and Reduction,” Geochim. Cosmochim. Acta 58, 2829–2843 (1994).

    Article  Google Scholar 

  104. W.-M. Wu, J. Carley, S. J. Green, J. Luo, et al., “Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface,” Environ. Sci. Technol. 44, 5104–5111 (2010).

    Article  Google Scholar 

  105. B. Wielinga, B. Bostick, C. M. Hansel, et al., “Inhibition of Bacterially Promoted Uranium Reduction: Ferric (Hydr)Oxide as a Competitive Electron Acceptors,” Environ. Sci. Technol. 34, 2190–2195 (2000).

    Article  Google Scholar 

  106. W. X. Zhang, “Nano-Scale Iron Particle for Environmental Remediation: An Overview,” J. Hanopart. 5, 323–332 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, 2011, published in Pochvovedenie, 2011, No. 8, pp. 940–952.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodyanitskii, Y.N. Chemical aspects of uranium behavior in soils: A review. Eurasian Soil Sc. 44, 862–873 (2011). https://doi.org/10.1134/S1064229311080163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229311080163

Keywords

Navigation