Skip to main content
Log in

Regulation of Aggregation of Self-Associated Peptides, Including N-Terminal Fragments of the Alzheimer’s β-Amyloid Peptide, by Nitro Derivatives of Azoloazine

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2019

This article has been updated

Abstract

The potential of the nitro compounds of the azoloazine class as regulators of aggregation of natural self-associating peptides was demonstrated by the example of fragments of the Alzheimer β-amyloid peptide and the melittin cytolytic peptide from bee venom. Depending on the type of an azoloazine derivative, association of a peptide into insoluble aggregates either occurred or was suppressed up to the peptide aggregates dissolution. The sites and stoichiometry of the azoloazine binding to the examined peptides are determined in the associates. These effects were explained by a unique ability of the azoloazine nitro derivatives to dissociate in aqueous solutions with the formation of a stable aromatic anion with electrostatic affinity to basic amino acid residues of the peptide molecules. This property of nitroazoloazines was used for a test of their ability to regulate the aggregation processes. Therefore, the nitro derivatives of azoloazines are promising inducers or inhibitors of the aggregation of the Alzheimer β-amyloid peptide and, possibly, other peptides which can form amyloid deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 October 2019

    erratum

References

  1. Bello, J., Bello, H.R., and Granado, E., Biochemistry, 1982, vol. 21, pp. 461–465.

    Article  CAS  Google Scholar 

  2. Quay, S.C. and Condie, C.C., Biochemistry, 1983, vol. 22, pp. 695–700.

    Article  CAS  Google Scholar 

  3. Shai, Y., Biopolymers, 2002, vol. 66, pp. 236–248.

    Article  CAS  Google Scholar 

  4. Bechinger, B., J. Membr. Biol., 1997, vol. 156, pp. 197–211.

    Article  CAS  Google Scholar 

  5. Wu, W.H., Sun, X., Yu, Y.P., Hu, J., Zhao, L., Liu, Q., Zhao, Y.F., and Li, Y.M., Biochem. Biophys. Res. Commun., 2008, vol. 373, no. 2, pp. 315–318.

    Article  CAS  Google Scholar 

  6. Stsiapura, V., Sukhanova, A., Baranov, A., Artemyev, M., Kulakovich, O., Oleinikov, V., Pluot, M., Cohen, J.H.M., and Nabiev, I, Nanotecnology, 2006, vol. 17, no. 2, pp. 581–587.

    Article  CAS  Google Scholar 

  7. Melnikau, D., Savateeva, D., Lesnyak, V., Gaponik, N., Fernandez, Y.N., Vasilevskiy, M.I., Costa, M.F., Mochalov, K.E., Oleinikov, V., and Rakovich, Y.P., Nanoscale, 2013, vol. 5, no. 19, pp. 9317–9323.

    Article  CAS  Google Scholar 

  8. Murphy, M.P. and LeVine, H., 3rd, J. Alzheimers Dis., 2010, vol. 19, no. 1, p. 311.

    Article  Google Scholar 

  9. Perez, M., Cuadros, R., Benitez, M.J., and Jimenez, J.S., J. Alzheimers Dis., 2004, vol. 6, no. 5, pp. 461–467.

    Article  CAS  Google Scholar 

  10. Rusinov, V.L., Petrov, A.Yu., and Postovskii, I.Ya., Khim. Geterotsikl. Soed., 1980, pp. 1283–1285.

    Google Scholar 

  11. Shestakova, T.S., Khalymbadzha, I.A., Deev, S.L., El’tsov, O.S., Rusinov, V.L., Shenkarev, Z.O., Arsen’ev, A.S., and Chupakhin, O.N., Izv. Akad. Nauk, Ser. Khim., 2011, pp. 714–717.

    Google Scholar 

  12. Chupakhin, O.N., Rusinov, V.L., Ulomskii, E.N., Charushin, V.N, Petrov, A.Yu., and Kiselev, O.I., RF Patent no. 2330036, 2008.

    Google Scholar 

  13. Chupakhin, O.N., Rusinov, V.L., Ulomskii, E.N., Charushin, V.N., Petrov, A.Yu., and Kiselev, O.I., RF Patent no. 2294936, 2007.

    Google Scholar 

  14. Koz’min, Yu.P., Manoilov, A.V., Serebryakova, M.V., and Mirgorodskaya, O.A., Russ. J. Bioorg. Chem., 2011, vol. 37, no. 6, pp. 719–731.

    Article  Google Scholar 

  15. Kozmin, Yu.P., Manoilov, A.V., Serebryakova, M.V., and Mirgorodskaya, O.A., Russ. J. Bioorg. Chem., vol. 37, no. 6, pp. 719–731.

  16. Toropygin, I.Y., Kugaevskaya, E.V., Mirgorodskaya, O.A., Elisseeva, Y.E., Kozmin, Y.P., Popov, I.A., Nikolaev, E.N., Makarov, A.A., and Kozin, S.A., Rapid Commun. Mass Spectrom., 2008, vol. 22, pp. 231–239.

    Article  CAS  Google Scholar 

  17. Esler, W.P., Stimson, E.R., Ghilardi, J.R., Lu, Y.A., Felix, AM., Vinters, H.V., Mantyh, P.W., Lee, J.P., and Maggio, J.E., Biochemistry, 1996, vol. 35, pp. 13914–13921.

    Article  CAS  Google Scholar 

  18. Tjernberg, L.O., Callaway, D.J., Tjernberg, A., Hahne, S., Lilliehook, C., Terenius, L., Thyberg, J., and Nordstedt, C., J. Biol. Chem., 1999, vol. 274, pp. 12619–12625.

    Article  CAS  Google Scholar 

  19. Hilbich, C., Kisterswoike, B., Reed, J., Masters, C.L., and Beyreuther, K., J. Mol. Biol., 1992, vol. 228, pp. 460–473.

    Article  CAS  Google Scholar 

  20. De Groot, N.S., Aviles, F.X., Vendrell, J., and Ventura, S., FEBS J., 2006, vol. 273, pp. 658–668.

    Article  Google Scholar 

  21. Gazit, E., FASEB J., 2002, vol. 16, pp. 77–83.

    Article  CAS  Google Scholar 

  22. Cukalevski, R., Boland, B., Frohm, B., Thulin, E., Walsh, D., and Linse, S., ACS Chem. Neurosci., 2012, vol. 3, no. 12, pp. 1008–1016.

    Article  CAS  Google Scholar 

  23. Armstrong, A.H., Chen, J., McKoy, A.F., and Hecht, M.H., Biochemistry, 2011, vol. 50, pp. 4058–4067.

    Article  CAS  Google Scholar 

  24. Creighton, T.E., Proteins: Structures and Molecular Properties, New York: Freeman, 2nd ed., pp. 4, 256.

  25. Funke, S.A. and Willbold, D., Current Pharmaceutical Design, 2012, vol. 18, pp. 755–767.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirgorodskaya, O.A., Kozmin, Y.P., Protasov, A.D. et al. Regulation of Aggregation of Self-Associated Peptides, Including N-Terminal Fragments of the Alzheimer’s β-Amyloid Peptide, by Nitro Derivatives of Azoloazine. Russ J Bioorg Chem 44, 665–675 (2018). https://doi.org/10.1134/S1068162019010096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019010096

Keywords

Navigation