Skip to main content
Log in

The evolution of the stress state in Southern California based on the geomechanical model and current seismicity

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

A three-dimensional geomechanical model of Southern California, which includes the mountain topography, fault tectonics, and main structural boundaries (the top of the lower crust and the Moho), is developed. The main stress state of the model is determined by the own weight of the rocks and by the horizontal tectonic motions identified from the GPS observations. The model enables tracking the changes which occur in the stress-strain state of the crust due to the evolution of the seismic process. As the input data, the model uses the current seismicity and treats each earthquake as a new defect in the Earth’s crust which brings about the redistribution of strains, elastic energy density, and yield stress of the crust. Monitoring the variations in the stress state of the crust and lithosphere arising in response to the seismic process shows that the model is suitable for forecasting the enhancement in seismic activity of the region and delineating the earthquake-prone areas with a reasonable probability on a given time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Zion, Y. and Rice, J.R., Slip patterns and earthquake populations along different classes of faults in elastic solids, J. Geophys. Res., 1995, vol. 100, pp. 12959–12983.

    Article  Google Scholar 

  • Ben-Zion, Y., Dynamic rupture in recent models of earthquake faults, J. Mech. Phys. Solids, 2001, vol. 49, pp. 2209–2244.

    Article  Google Scholar 

  • Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Lapshin, V.M., Nechaev, Yu.V., Steblov, G.M., and Shalimov, S.L., Geomechanical models and ionospheric variations related to strongest earthquakes and weak influence of atmospheric pressure gradients, Dokl. Earth Sci., 2007, vol. 414, no. 4, pp. 666–669.

    Article  Google Scholar 

  • Bondur, V.G., Garagash, I.A., Gokhberg, M.B., Grekhova, E.A., Kolosnitsyn, N.I., Shalimov, S.L., and Veys, V.A., Atmospheric pressure gradient as a possible trigger of great earthquakes, Proc. XXV IUGG General Assembly “Towards Short-Term Earthquake Prediction— Electromagnetic And Other Possible Precursors And Their Generation Mechanisms,” Melbourne, 2011.

    Google Scholar 

  • Burridge, R. and Knopoff, L., Model and theoretical seismicity, Bull. Seismol. Soc. Am., 1967, vol. 57, pp. 341–371.

    Google Scholar 

  • Chen, P., Zhao, L., and Jordan, T.H., Full 3D tomography for crustal structure of the Los Angeles region, Bull. Seismol. Soc. Am., 2007, vol. 97, pp. 1094–1120.

    Article  Google Scholar 

  • Christensen, R.M., Mechanics of Composite Materials, New York: Wiley, 1979.

    Google Scholar 

  • Field, E., Dawson, T., Felzer, K., Frankel, A., Gupta, V., Jordan, T.H., Parsons, T., Petersen, M., Stein, R., Weldon, R., and Wills, C., Uniform California Earthquake Rupture Forecast, Version 2, Bull. Seismol. Soc. Am., 2009, vol. 99, pp. 2053–2107.

    Article  Google Scholar 

  • Garagash, I.A. and Nikolaevskii, V.N., Nonassociated flow laws and localization of plastic deformation, Usp. Mekh., 1989, vol. 12, pp. 131–183.

    Google Scholar 

  • Garagash, I.A., The search for the locations of the future strong earthquakes, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 4, pp. 862–867.

    Google Scholar 

  • Gokhberg, M.B., Garagash, I.A., Nechaev, Yu.V., Rogozhin, E.A., and Yunga, S.L., Geomekhanicheskaya model’ seismicheskogo klastera “Chaina-Leik Yuzhnoi Kalifornii. Issledovaniya v oblasti geofiziki. K 75-letiyu Ob”edinennogo instituta fiziki Zemli (The Geomechanical Model of the China Lake Seismic Cluster in South California. Studies in Geophysics. To the 75th Anniversary of the Schmidt Institute of Physics of the Earth), Moscow: OIFZ RAN, 2004.

    Google Scholar 

  • Gomberg, J., Seismicity and shear strain in the southern great basin of Nevada and California, J. Geophys. Res., 1991, vol. 96, no. B10, pp. 16383–16399.

    Article  Google Scholar 

  • Huang, J. and Turcotte, D.L., Are earthquakes an example of deterministic chaos?, Geophys. Rev. Lett., 1990, vol. 17, pp. 223–226.

    Article  Google Scholar 

  • Huang, J., Narkounskaia, G., and Turcotte, D.L., A cellular-automata, slider-block model for earthquakes: 2. Demonstration of self-organized criticality for a 2D system, Geophys. J. Int., 1992, vol. 111, pp. 259–269.

    Article  Google Scholar 

  • Jordan, T.H., Earthquake predictability, brick by brick, Seismol. Res. Lett., 2006, vol. 77, no. 1, pp. 3–6.

    Article  Google Scholar 

  • Jordan, T.H. and Jones, L.M., Operational earthquake forecasting: some thoughts on why and how, Seismol. Res. Lett., 2010, vol. 81, pp. 571–574.

    Article  Google Scholar 

  • Kasahara, K., Earthquake Mechanics, Cambridge: Cambridge Univ. Press, 1981.

    Google Scholar 

  • Keilis-Borok, V., Shebalin, P., Gabrielov, A., and Turcotte, D., Reverse tracing of short-term earthquake precursors, Phys. Earth Planet. Inter., 2004, vol. 145, pp. 75–85.

    Article  Google Scholar 

  • Keilis-Borok, V.I. and Soloviev, A.A., Variations of trends of indicators describing complex systems: change of scaling precursory to extreme events, Chaos, 2010, vol. 20, no. 3, 033104.

    Article  Google Scholar 

  • Metody detal’nogo izucheniya seismichnosti. Trudy In-ta fiziki Zemli ANSSSR (Methods for the Detailed Study of Seismicity. Proc. Inst. Phys. Earth, Akad. Nauk SSSR), Moscow, 1960, vol. 9 (176).

    Google Scholar 

  • Molchan, G. and Keilis-Borok, V., Seismology earthquake prediction: probabilistic aspect, Geophys. J. Int., 2008, vol. 173, pp. 1012–1017.

    Article  Google Scholar 

  • Myachkin, V.I., Kostrov, B.V., Sobolev, G.A., and Shamina, O.G., Basic physics of seismic source and earthquake precursors, in Fizika ochaga zempletryaseniya (Physics of the Earthquake Source), Moscow: Nauka, 1975, pp. 6–29.

    Google Scholar 

  • Narkounskaia, G. and Turcotte, D.L., A cellular-automata, slider-block model for earthquakes: 1. Demonstration of chaotic behavior for a low order system, Geophys. J. Int., 1992, vol. 111, pp. 250–258.

    Article  Google Scholar 

  • Nechaev, Yu.V., Lineamenty i tektonicheskaya razdroblennost’: distantsionnoe izuchenie vnutrennego stroeniya litosfery (Lineaments and Tectonic Fragmentation: Remote Study of the Internal Strucvture of the Lithosphere), Moscow: IFZ RAN, 2010.

    Google Scholar 

  • Nersesov, I.L., Ponomarev, V.S., and Kuchai, V.K., The pattern of the spatial distribution of seismic background noise, in Poiski predvestnikov zemletryasenii na prognosticheskikh poligonakh (Searching for Earthquake Precursors at the Prognostic Sites), Moscow: Nauka, 1974, pp. 119–131.

    Google Scholar 

  • Nikolaevskiy, V.N., Geomechanics and Fluidodynamics, Dordrecht: Kluwer, 1996.

    Book  Google Scholar 

  • Parsons, T., Tectonic stressing in California modeled from GPS observations, J. Geophys. Res., 2006, vol. 111, B03407.

    Google Scholar 

  • Powers, P. and Jordan, T.H., Seismicity distribution across strike-slip faults in California, J. Geophys. Res., 2010, vol. 115, B05305.

    Google Scholar 

  • Rice, J.R., On stability of dilatant hardening for saturated rock masses, J. Geophys. Res., 1975, vol. 80, no. 11, pp. 1531–1536.

    Article  Google Scholar 

  • Rice, J., Constitutive relations for fault slip and earthquake instabilities, Pure Appl. Geophys., 1983, vol. 121, pp. 187–219.

    Article  Google Scholar 

  • Rundle, J.B., Rundle, P.B., Klein, W., De Sa, Martins, J., Tiampo, K.F., Donnellan, A., and Kellog, L.H., Gem plate boundary simulations for the plate boundary observatory: a program for understanding the physics of earthquakes on complex fault networks via observations, theory and numerical simulation, Pure Appl. Geophys., 2002, vol. 159, pp. 2357–2381.

    Article  Google Scholar 

  • Salganik, R.L., Mechanics of the bodies with a large number of fractures, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1974, no. 4, pp. 149–158.

    Google Scholar 

  • Sobolev, G.A., Fundamental of Earthquake Prediction, Moscow: Nauka, 1993.

    Google Scholar 

  • Turcotte, D.L., Crustal deformation and fractals: a review, in Fractals and Dynamic Systems in Geosciences, Kruhl, J.H., Ed., Berlin: Springer, 1994, pp. 7–23.

    Chapter  Google Scholar 

  • Williams, C.A. and Richardson, R.M., A rheologically layered three-dimensional model of the San-Andreas Fault in central and southern California, J. Geophys. Res., 1991, vol. 96, no. B10, pp. 16597–16623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Bondur.

Additional information

Original Russian Text © V.G. Bondur, I.A. Garagash, M.B. Gokhberg, M.V. Rodkin, 2016, published in Fizika Zemli, 2016, No. 1, pp. 120–132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondur, V.G., Garagash, I.A., Gokhberg, M.B. et al. The evolution of the stress state in Southern California based on the geomechanical model and current seismicity. Izv., Phys. Solid Earth 52, 117–128 (2016). https://doi.org/10.1134/S1069351316010043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351316010043

Keywords

Navigation