Skip to main content
Log in

Studies of the interaction between apigenin and bovine serum albumin by spectroscopic methods

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The interaction between apigenin (Ap) and bovine serum albumin (BSA) in physiological buffer (pH = 7.4) is investigated by fluorescence quenching technique and UV-vis absorption spectra. The results reveal that Ap could strongly quench the intrinsic fluorescence of BSA. The quenching mechanism of Ap for BSA varies with the change of Ap concentration. when Ap concentration is lower, it is a static quenching procedure, when Ap concentration is higher, a combined quenching (both static and dynamic) would operate. The apparent binding constants Ka and number of binding sites n of Ap with BSA are obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δr H m and entropy change (Δr S m), are calculated to be −15.382 kJ mol−1 K−1 < 0 and 104.888 J mol−1 K−1 > 0, respectively, which indicate that the interaction of Ap with BSA is driven mainly by hydrogen bonding and hydrophobic interactions. The distance r between BSA and Ap is calculated to be 1.89 nm based on Förster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra show that binding of Ap with BSA cannot induce conformational changes in BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Havsteen, B.H., Pharmacol. Ther., 2002, vol. 96, no. 67, p. 202

    Google Scholar 

  2. Mariano Cárdenasa, Mariel Mardera, Viviana C. Blanka, and Leonor, P., Roguin.Bioorg. Med. Chem., 2006, vol. 14, pp. 2966–2971.

    Article  Google Scholar 

  3. Vargo, M,A., Voss, O.H, Poustka, F., et al. Biochem. Pharmacol., 2006, vol. 72, no. 6, pp. 681–692.

    Article  CAS  Google Scholar 

  4. Psotova, J., Chlopcikova, S., Miketova, P., Hrbac, J., and Simanek, V., Phytother. Res., 2004, no. 18, pp. 516–521.

  5. Ashoka, S., Seetharamappa, J., Kandagal, P.B., and Shaikh, S.M.T., J. Lumin.,, 2006, no. 121, pp. 179–186.

  6. Guharay, J., Sengupta, B., and Sengupta, P.K., Proteins, 2001, vol. 43, no.2, p. 71.

    Article  Google Scholar 

  7. Kandagal, P.B., Ashoka, S., Seetharamappa, J., Shaikh, S.M.T., Jadegoud, Y., and Ijare, P.B., J. Pharm. Biomed. Anal., 2006, no. 41, pp. 393–399.

  8. Kanakis, C.D., Tarantilis, P.A., Polissiou, M.G., Diamantoglou, S., and Tajmir-Riahi, H.A., J. Mol. Struct., 2006, no. 798, pp. 69–74

  9. Kandagal, P.B., Shaikh, S.M.T., Manjunatha, D.H., Seetharamappa, J., and Nagaralli, B.S., J. Photochem. Photobiol. A, 2007, no. 189, pp. 121–127.

  10. Shen, X.C., Liang, H., Guo, J.H., Song, C., He, X.W., and Yuan, Y.Z., J. Inorg. Biochem., 2003, no. 95, pp. 124–130.

  11. Sulkowska, A., Bojko, B., Rownicka, J., Rezner, P., and Sulkowski, W.W., J. Mol. Struct., 2005, no. 744, pp. 781–787.

  12. Maria Hepel, Electroanalysis, 2005, no. 17, pp. 1401–1412.

  13. Girard, I. and Ferry, S., J. Pharmaceut. Biomed., 1996, no. 14, pp. 583–591.

  14. Millot, M.C., Servagent-Noinville, S., Taleb, N.L., Baron, M.H., Revault, M., and Sebille, B., J. Chromatogr. B: Biomed. Sci., 2001, no. 753, pp. 101–113.

  15. Cao, H., Liu, Q., Shi, J., et al., Analytical Letters, 2008, no. 41, pp. 521–532.

  16. Qu, L.-b., Wang, L., Yang, R., et al., Acta Pharmaceutica Sinica, 2006, no. 41, pp. 352–357.

  17. Yuan, J.-L., Lv, Z., Liu, Z.-G., et al., J. of Photochemistry and Photobiology A: Chemistry, 2007, no. 191, pp. 104–113.

  18. Grattan, K.T.V. and Meggitt, B.T., Chemical and Environmental Sensing, Lakowicz, J.R., Ed., New York: Plenum Press, 1999, pp. 237–265.

    Google Scholar 

  19. Zhang, X.W, Zhao, F.L, and Li, K.A., J. Chem. Chin. Univ., 1999, no. 20, pp. 1063–1067.

  20. Wang, Y., Zhang, H., Zhang, G., Tao, W., Fei, Z., Liu, Z., Wang, Y.-Q., Zhang, H.-M. Zhang, G.C., Tao, W.-H., Fei, Z.H., and Liu, Z.T., J. Pharm. Biomed. Anal., 2007, no. 43, pp. 1869–1875.

  21. Jiang, Min, Xie, Meng-Xia, Zheng, Dong, Liu, Yuan, Li, Xiao-Yu, and Chen, Xing, J. Mol. Struct., 2004, no. 692, pp. 71–80.

  22. Spector, T., Hall, W.W., and Krenitsky, T.A., Biochem. Pharmacol. 1986, no. 35(18), pp. 3109–3114.

  23. Aiqin, Gong, Xiashi, Zhu, Yanyan, Hu, and Suhai, Yu., Talanta, 2007, no. 73, pp. 668–673.

  24. Shuyun, Bi, Lan Ding, Yuan Tian, Daqian Song, Xin Zhou, Xia Liu, and Hanqi Zhang, J. Mol. Struct., 2004, no. 703, pp. 37–45.

  25. Yan-Jun Hua, Hua-Guang Yua, Jia-Xin Donga, Xi Yanga, and Yi Liu, Spectrochim. Acta, Part A, 2005, no. 65, pp. 988–992.

  26. Yan-Jun Hu, Yi Liu, Jia-Bo Wang, Xiao-He Xiao, and Song-Sheng Qu, J. of Pharmaceutical and Biomedical Analysis, 2004, no. 36, pp. 915–919.

  27. Sulkowska, A., J. Mol. Struct., 2003, no. 614, pp. 227–232.

  28. Yan-Qing Wang, Hong-Mei Zhang, Gen-Cheng Zhang, Wei-Hua Tao, Zheng-Hao Fei, and Zong-Tang Liu, J. Pharm. Biomed. Anal., 2007, no. 43, pp. 1869–1875.

  29. Leckband, D., Annu. Rev. Biophys. Biomol. Struct., 2000, no. 29, pp. 1–26.

  30. Jing-Ci Li, Ning Lib, Qiu-Hua Wu, Zhi Wang, Jing-Jun Ma, Chun Wang, and Li-Juan Zhang, J. Mol. Struct., 2007, no. 833, p. 184.

  31. Ross, P.D. and Subramanian, S., Biochemistry, 1981, no. 20, pp. 3096–3102.

  32. Tian, J., Liu, J., Hub, Z., and Chen, X., Bioorg. Med. Chem., 2005, no. 13, pp. 4124–4129.

  33. Ferenc Zsila, Zsolt Bikádi, and Miklós Simonyi, Biochem. Pharmacol., 2003, no. 65, pp. 447–456.

  34. Naik, D.B., Moorthy, P.N., and Priyadarsini, K.I., Chem. Phys. Lett., 1990, no. 168, pp. 533–538.

  35. Modern Quantum Chemistry, Förster, T. and Sinanoglu, O., Eds., vol. 3, New York: Academic Press, 1996, p. 93.

    Google Scholar 

  36. Feng-Ling Cuia, Jing Fanb, Jian-Ping Lib, and Zhi-De Hu, Bioorg. Med. Chem., 2004, no. 12, pp. 151–157.

  37. Hu, Y.J., Liu, Y., and Zhang, L.X., J. Mol. Struct., 2005, no. 750, pp. 174–178.

  38. Ya-Ping Wang, Yan-li Wei, and Chuan Dong, J. Photochem. Photobiol., 2006, no. 17, pp. 6–11.

  39. Lloyd, J.B.F., Nature Phys Sci., 1971, no. 231, pp. 64–65.

  40. Chen, G.Z., Huang, X.Z., Xu, J.G., et al., Methods of Fluorescence Analysis, 2nd ed., Beijing: Science Press, 1990.

    Google Scholar 

  41. Apicella, B., Ciajolo, A., and Tregrossi, A., Anal.Chem., 2004, no. 76, pp. 2138–2143.

  42. Miller, J.N., Proc. Anal. Div. Chem. Soc., 1979, no. 16, pp. 203–208.

  43. Jianghong, T., Feng, L., and Xingguo, C., Bioorg. Med. Chem., 2006, no. 14, pp. 3210–3217.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Shang.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Li, H. Studies of the interaction between apigenin and bovine serum albumin by spectroscopic methods. Russ J Gen Chem 80, 1710–1717 (2010). https://doi.org/10.1134/S1070363210080232

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210080232

Keywords

Navigation