Skip to main content
Log in

Complexation modulated redox behavior of transition metal systems (review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ligand effect is a favorable factor in modulation of redox potential of transition metal ion oxidation-reduction systems. Coordination promoted redox action of transition metals can be an efficient approach to design of new redox systems with specific applications. The current review is devoted to the complexation effect of selected ligands on the redox potential of iron, cobalt and copper redox couples and application of such systems in analytical estimations. Indirect estimation of non redox systems by a non redox reaction over a platinum electrode has been referred to as a pseudo indicator action. Application of coordination modulated redox potentials in the natural attenuation of toxic environmental contaminants is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, W., Chen, Z., Brennaman, M.K., Concepcion, J.J., Otavio, A., Patrocinio, T., Murakami, N.Y., and Meyer, T.J., Pure and Applied Chemistry, 2011, vol. 83, p. 749. DOI: 10.1351/PAC-CON-10-11-09.

    Article  CAS  Google Scholar 

  2. Kashif, M.K., Axelson, J.C., Duffy, N.W., Forsyth, C.M., Chang, C.J., Long, J.R., Spiccia, L., and Bach, U., J. Am. Chem. Soc., 2012, vol. 134, p. 16646. DOI: 10.1021/ja305897k.

    Article  CAS  Google Scholar 

  3. Reisner, E., Arion, V.B., Fatima, M., da Silva, C.G., Lichtenecker, R., Eixhinger, A., Keppler, B.K., Kukushkin, V.Y., and Pombeiro, A.J.L., Inorg. Chem., 2004, vol. 43, p. 7083. DOI: 10.1021/ic049479c.

    Article  CAS  Google Scholar 

  4. Marshall, N.M., Garner, D.K., Wilson, T.D., Gao, Y.G., Robinson, H, Nilges, M.J., and Lu, Y., Nature, 2009, vol. 462, p. 113. DOI: 10.1038/nature08551.

    Article  CAS  Google Scholar 

  5. Zuris, J.A., Halim, D.A., Conlan, A.R., Abresch, E.C., Nechushtai, R., Paddock, M.L., and Jennings, P.A., J. Am. Chem. Soc., 2010, vol. 132, p. 13120. DOI: 10.1021/ja103920k.

    Article  CAS  Google Scholar 

  6. Teshima, N., Katsumata, H., and Kawashima, T., Anal. Sci., 2000, vol. 16, p. 901 DOI: 10.2116/analsci.16.901.

    Article  CAS  Google Scholar 

  7. Rizvi, M.A., Syed, R.M., and Khan, B.U., J. Chem. Educ., 2011, vol. 88, p. 220. DOI: 10.1021/ed100339g.

    Article  CAS  Google Scholar 

  8. Rizvi, M.A., Teshima, N., and Peerzada, G.M., Croat. Chem. Acta, 2013, vol. 86, p. 345. DOI: 10.5562/cca2167.

    Article  CAS  Google Scholar 

  9. Buerge, I.J. and Hug, S.J., Environ. Sci. Tech., 1998, vol. 32, p. 2092, DOI: 10.1021/es970932b.

    Article  CAS  Google Scholar 

  10. Boukhalfa, H., and Crumbliss, A.L., Biometals, 2002, vol. 15, p. 325 DOI: 10.1023/A:1020218608266.

    Article  CAS  Google Scholar 

  11. Mailloux, R.J., Jin, X., and Willmore, W.G., Redox Biol., 2014, vol. 2, p. 123.

    Article  CAS  Google Scholar 

  12. Ibanez, J. G., Gonzalez, I., and Cardenas, M.A., J. Chem. Educ. 1988, vol. 65: p. 173. DOI: 10.1021/ed065p173.

  13. Rizvi, M.A., Raashid, M., Jan, R., and Peerzada, G.M., Chem. Ed., 2011, vol. 16, p. 72. DOI 10.1333/s00897112337a.

    CAS  Google Scholar 

  14. McBryde, W.A.E., A Critical Review of Equilibrium Data for Proton and Metal Complexes of 1,10-Phenanthroline, 2,2-Bipyridyl and Related Compounds, Oxford: Pergamon, 1975.

    Google Scholar 

  15. David, R.L., Handbook of Chemistry and Physics, New York, CRC Press Taylor & Francis, 2005–2006, pp. 8–21.

    Google Scholar 

  16. Ogura, K., Urabe, H., and Yosino, T. Electrochim. Acta, 1977, vol. 22, p. 285. DOI: 10.1016/0013-4686(77) 85074-3.

    Article  CAS  Google Scholar 

  17. Raashid, S., Rizvi, M.A., and Khan, B.U., J. Pharm. Res., 2012, vol. 5, p. 2715.

    CAS  Google Scholar 

  18. Teshima, N. and Kawashima, T., Bull. Chem. Soc. Jpn, 1996, vol. 69, p. 1975 DOI: 10.1246/bcsj.69.1975.

    Article  CAS  Google Scholar 

  19. Huang, W.Q., Huang, G.F., Wang, L.L and Shi, X.G., Int. J. Electrochem. Sci., 2008, vol. 3, p. 1316.

    CAS  Google Scholar 

  20. Rizvi, M.A., Akhoon, S., Maqsood, S.R., and Peerzada, G.M., Croat. Chem. Acta, 2015, vol. 88 (in press); http://dx.doi.org/10.5562/cca2479.

  21. Maqsood, S.R., Bhat, M.A., and Khan, B.U., J. Coord. Chem., 2013, vol. 66, p. 1211 DOI: 10.1080/00958972.2013.778987.

    Article  CAS  Google Scholar 

  22. Gupta, V.K., Goyal, R.N., Khayat, M.A., Kumar, P., and Bachheti, N., Talanta, 2006, vol. 69, p. 1149. DOI: 10.1016/j.talanta.2005.12.040.

    Article  CAS  Google Scholar 

  23. Raashid, S., Chatt, O. A., Rizvi, M.A., Bhat, M.A., and Khan, B.U., Talanta, 2012, vol. 101, p. 246. DOI: 10.1016/j.talanta.2012.09.020.

    Article  CAS  Google Scholar 

  24. Rizvi, M.A., Teshima, N., and Peerzada, G.M., Asian J. Chem., 2013, vol. 25, p. 4776. DOI: 10.14233/ajchem.2013.14099.

    CAS  Google Scholar 

  25. Serjeant, E.P., Potentiometry and Potentiometric Titrations. In A Series of Monographs on Analytical Chemistry and Its Applications, Vol. 69, Elving, P.J. and Winefordner, J.D., Eds., New York: John Wiley & Sons, 1984, p. 38.

  26. Namazian, M., Lin, C.Y., and Coote, M.L., J. Chem. Theo. Comput., 2010, vol. 6, p. 2721. DOI: 10.1021/ct1003252.

    Article  CAS  Google Scholar 

  27. Ahrland, S., Pure Appl. Chem., 1982, vol. 54, p. 1451 10.1351/pac198254081451.

    Article  CAS  Google Scholar 

  28. Li, T and Balbuena, P. B., J. Electrochem. Soc., 1999, vol. 146, p. 3613 DOI: 10.1149/1.1392523.

    Article  CAS  Google Scholar 

  29. Rizvi, M.A., Akhoon, S., Maqsood, S.R., and Peerzada, G.M., J. Anal. Chem., 2015, vol. 70, p. 632. DOI: 10.1134/S1061934815050093.

    Article  Google Scholar 

  30. Aust Koppenol, W.H., Oxidative Damage and Repair: Chemical, Biological and Medical Aspects Oxford, England, Pergamon Press, 1991, p. 802.

    Book  Google Scholar 

  31. Kosman, D.J., Coord. Chem. Rev., 2013, vol. 257, p. 210. DOI: 10.1016/j.ccr.2012.06.030.

    Article  CAS  Google Scholar 

  32. Zhu, B.-Z., Antholine, W.E., Frei, B., Free Rad. Biol. Med., 2002, vol. 32, p. 1333. DOI: 10.1016/S0891-5849 (02)00847-X.

    Article  CAS  Google Scholar 

  33. Milaeva, E.R., Curr. Top. Med. Chem, 2011, vol. 11, p. 2703. DOI: 10.2174/156802611798040741.

    Article  CAS  Google Scholar 

  34. Maqsood, S. R., PhD Thesis (Chemistry), University of Kashmir, India, 2013

  35. Levine R.L., Williams J, Stadtman, E.R., and Shacter, E., Methods Enzymol., 1994, vol. 233, p. 346. DOI: 10.1016/S0076-6879(94)33040-9.

    CAS  Google Scholar 

  36. Albrecht, A.M. and Crumbliss, A.L., Met. Ions Biol. Syst., 1998, vol. 35, p. 239.

    Google Scholar 

  37. Kalinowski, D.S. and Richardson, D.R., Pharmacol. Rev., 2005, vol. 57, p. 547. DOI: 10.1124/pr.57.4.2.

    Article  CAS  Google Scholar 

  38. Crumbliss, A.L. and Harrington, J.M., Adv. Inorg. Chem., 2009, vol. 61, p. 179. DOI: 10.1016/S0898-8838 (09)00204-9.

    CAS  Google Scholar 

  39. Liu, Z.D. and Hider, R.C., Coord. Chem. Rev., 2002, vol. 232, p. 151. DOI: 10.1016/S0010-8545(02)00050-4.

    Article  CAS  Google Scholar 

  40. Dhungana, S., Anderson, D.S., Mietzner, T.A., and Crumbliss, A.L., Biochemistry, 2005, vol. 44, p. 9606. DOI: 10.1021/bi0505518

    Article  CAS  Google Scholar 

  41. Dhungana, S., Anderson, D.S., Mietzner, T. A., and Crumbliss, A.L., J. Inorg. Biochem., 2004, vol. 98, p. 1975. DOI: 10.1016/j.jinorgbio.2004.08.00442.

    Article  CAS  Google Scholar 

  42. Dhungana, S. and Crumbliss, A.L., Geomicrobiology, 2005, 22, p. 87. DOI: 10.1080/01490450590945870.

    Article  CAS  Google Scholar 

  43. Harrington, J.M., and Crumbliss, A.L., Biometals, 2009, vol. 22, p. 679. DOI: 10.1007/s10534-009-9233-4.

    Article  CAS  Google Scholar 

  44. Raymond, K.N. and Dertz, E.A., in Iron Transport in Bacteria, Crosa, J.H., Rey, A.R., and Payne, S.M., Eds., Washinington, DC, ASM Press, 2004, pp. 3–17.

  45. Richens, D.T., Chem Rev, 2005, vol. 105, p. 1961. DOI: 10.1021/cr030705u.

    Article  CAS  Google Scholar 

  46. Mies, K.A., Wirgau, J.I., and Crumbliss, A.L., Biometals, 2006, vol. 19, p. 115. DOI: 10.1007/s10534-005-4342-1.

    Article  CAS  Google Scholar 

  47. Strathmann, T.J. and Stone, A.T., Environ Sci. Tech., 2002, vol. 36, p. 5172. DOI: 10.1021/es0205939.

    Article  CAS  Google Scholar 

  48. Bussan, A.L. and Strathmann, T.J., Environ. Sci. Tech., 2007, vol. 41, p. 6740. DOI: 10.1021/es071108i

    Article  CAS  Google Scholar 

  49. Kim, D. and Strathmann, T.J., Environ. Sci. Tech., 2007, vol. 41, p. 1257. DOI: 10.1021/es062365a.

    Article  CAS  Google Scholar 

  50. Naka, D. and Kim, D., Environ. Sci. Tech., 2006, vol. 40, p. 3006. DOI: 10.1021/es060044t.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Ahmad Rizvi.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, M.A. Complexation modulated redox behavior of transition metal systems (review). Russ J Gen Chem 85, 959–973 (2015). https://doi.org/10.1134/S1070363215040337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215040337

Keywords

Navigation