Skip to main content
Log in

Use of Mechanochemical Activation and Ultrasonic Treatment for the Synthesis of LTA Zeolite

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The processes of LTA zeolite synthesis from mixtures of metakaolin and solid sodium hydroxide with an overstoichiometric quantity of alumina (molar composition of the mixture Al2O3·2SiO2: NaOH: Al2O3 = 6: 12: 2) were examined in relation to the treatment method used in the first step (mechanochemical activation or ultrasonic treatment). Formation of cubic sodium aluminate in the first step was established in both cases. Subsequent heat treatment in the case of mechanical activation resulted in the synthesis of the LTA zeolite, and in the case of ultrasonic treatment, in the synthesis of sodium aluminosilicates. After final hydrothermal crystallization the LTA zeolite quantity exceeded 95 wt %. The zeolite phase morphology was shown to depend on the treatment method used in the first step of the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Breck, D.W., Zeolite Molecular Sieves: Structure, Chemistry and Use, New York: Wiley, 1974.

    Google Scholar 

  2. Zeolite Chemistry and Catalysis, ACS Monograph 171, Rabo, J.A., Ed., Washington: Am. Chem. Soc., 1976, vol. 1.

  3. Maier, W.M., Molecular Sieves, London: Soc. Chem. Ind., 1968.

    Google Scholar 

  4. Niwa, M., Katada, N., and Okumura, K., Characterization and Design of Zeolite Catalysts: Solid Acidity, Shape Selectivity, and Loading Properties, Berlin: Springer, 2010.

    Book  Google Scholar 

  5. Delprato, F., Delmotte, L., Guth, J.L., and Huve, L., Zeolites, 1990, vol. 10, no. 6, p. 546.

    Article  CAS  Google Scholar 

  6. Reed, T.B. and Breck, D.W., J. Am. Chem. Soc., 1956, vol. 78, no. 23, p. 5972.

    Article  CAS  Google Scholar 

  7. Davis, M.E., Stud. Surf. Sci. Catal., 1995, vol. 97, p. 35.

    Article  CAS  Google Scholar 

  8. Anthony, J.L. and Davis, M.E., Assembly of Zeolites and Crystalline Molecular Sieves, in Self–Organized Nanoscale Materials, Adachi, M. and Lockwood, D.J., Eds., New York: Springer Science, 2006, p. 159.

    Google Scholar 

  9. Pavlov, M.L., Travkina, O.S., Basimova, R.A., Pavlova, I.N., and Kutepov, B.I., Pet. Chem., 2009, vol. 49, no. 1, p. 36. 134/S0965544109010071

    Article  Google Scholar 

  10. Jadambaa, T., Kiyoshi, O., and Mackenzie, K.J.D., Mater. Lett., 2002, vol. 52, nos. 1–2, p. 91.

  11. Pavlov, M.L., Travkina, O.S., and Kutepov, B.I., Katal. Prom–sti, 2011, no. 4, p. 43.

    Google Scholar 

  12. Avvakumov, E., Senna, M., and Kosova, N., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, New York: Kluwer Academic, 2002.

    Google Scholar 

  13. Baláž, P., Mechanochemistry in Nanoscience and Minerals Engineering, Berlin: Springer, 2008.

    Google Scholar 

  14. Boldyrev, V.V. and Tkáčvá, K., J. Mater. Synth. Process, 2000, vol. 8, nos. 3–4, p. 121.

  15. Prokof’ev, V.Yu. and Gordina, N.E., Steklo Keram., 2014, no. 1, p. 11.

    Google Scholar 

  16. Prokof’ev, V.Yu., Gordina, N.E., and Zhidkova, A.B., Russ. J. Appl. Chem., 2012, vol. 85, no. 7, p. 1077. 1134/S1070427212070142

    Article  CAS  Google Scholar 

  17. Prokof’ev, V.Yu., Gordina, N.E., Zhidkova, A.B., and Efremov, A.M., J. Mater. Sci., 2012, vol. 47, no. 14, p. 5385.

    Article  CAS  Google Scholar 

  18. Gordina, N.E. and Prokof’ev, V.Yu., Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol., 2013, vol. 56, no. 10, p. 79.

    CAS  Google Scholar 

  19. Prokof’ev, V.Yu. and Gordina, N.E., Russ. J. Appl. Chem., 2013, vol. 86, no. 3, p. 332. 134/S1070427213030075

    Article  CAS  Google Scholar 

  20. Prokof’ev, V.Yu., Gordina, N. E., and Efremov, A.M., J. Mater. Sci., 2013, vol. 48, no. 18, p. 6276.

    Article  CAS  Google Scholar 

  21. Klyuntina, A.B., Gordina, N.E., and Prokof’ev, V.Yu., Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol., 2013, vol. 56, no. 3, p. 73.

    Google Scholar 

  22. Prokof’ev, V.Yu. and Gordina, N.E., Appl. Clay. Sci., 2014, vol. 101, November, p. 44.

  23. Kuttruff, H., Ultrasonics Fundamentals and Applications, London: Elsevier Science, 1991.

    Google Scholar 

  24. Gedanken, A., Ultrason. Sonochem., 2004, vol. 11, no. 2, p. 47.

    Article  CAS  PubMed  Google Scholar 

  25. Gandhi, K.S. and Kumar, R., Sadhana, 1994, vol. 19, part 6, p. 1055.

  26. Shah, Y.T., Pandit, A.B., and Moholkar, V.S., Cavitation Reaction Engineering, New York: Kluwer/Plenum, 1999.

    Book  Google Scholar 

  27. Askari, S., Alipour, Sh.M., Halladj, R., and Farahani, M.H.D.A., J. Porous. Mater., 2013, vol. 20, no. 1, p. 285.

    Article  CAS  Google Scholar 

  28. Andaç, Ö., Tatlier, M., Sirkecioğlu, A., Ece, I., and Erdem-Şenatalar, A., Micropor. Mesopor. Mater., 2005, vol. 79, nos. 1–3, p. 225.

  29. Boldyrev, V.V., Eksperimental’nye metody v mekhanokhimii tverdykh neorganicheskikh veshchestv (Experimental Methods in Mechanochemistry of Solid Inorganic Substances), Novosibirsk: Nauka, 1983.

    Google Scholar 

  30. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed.

    Google Scholar 

  31. The Infrared Spectra of Minerals, Farmer, V.C., Ed., London: Mineral. Soc., Monograph 4, 1974.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Gordina.

Additional information

Original Russian Text © N.E. Gordina, V.Yu. Prokof’ev, S.P. Kochetkov, 2016, published in Rossiiskii Khimicheskii Zhurnal, 2016, Vol. 60, No. 2, pp. 39–47.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordina, N.E., Prokof’ev, V.Y. & Kochetkov, S.P. Use of Mechanochemical Activation and Ultrasonic Treatment for the Synthesis of LTA Zeolite. Russ J Gen Chem 88, 1981–1989 (2018). https://doi.org/10.1134/S1070363218090402

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218090402

Keywords

Navigation