Skip to main content
Log in

Synthesis of New 4,4a-Dihydroxanthones via [4+2]-Cycloaddition Reaction

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of electronic properties of substituents in the reactants on the [4+2]-cycloaddition of 3-vinyl-chromen-4-ones (dienes) and N-vinylpyrrolidines (dienophiles) has been studied. The conditions determining the formation of 4,4a-dihydroxanthones or benzophenones as the major products have been found. The aromatization of 4,4a-dihydroxanthones via pyran ring opening has been interpreted by quantum chemical calculations. A wide series of new 4,4a-dihydroxanthone and benzophenone derivatives have been isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruan, J., Zheng, C., Liu, Y., Qu, L., Yu, H., Han, L., Zhang, Y., and Wang, T., Molecules, 2017, vol. 22, p. 1698. https://doi.org/10.3390/molecules22101698

    Article  Google Scholar 

  2. Hakim, E.H., Achmad, S.A., Juliawaty, L.D., Makmur, L., Syah, Y.M., Aimi, N., Kitajima, M., Takayama, H., and Chisalberti, E.L., J. Nat. Med., 2006, vol. 60, p. 161. https://doi.org/10.1007/s11418-006-0048-0

    Article  CAS  Google Scholar 

  3. Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G., and Prinsep, M.R., Nat. Prod. Rep., 2014, vol. 31, p. 160. https://doi.org/10.1039/c3np70117d

    Article  CAS  Google Scholar 

  4. Masters, K.-S. and Bräse, S., Chem. Rev., 2012, vol. 112, p. 3717. https://doi.org/10.1021/cr100446h

    Article  CAS  Google Scholar 

  5. Sato, S., Nakagawa, R., Fudo, R., Fukuda, Y., Yo-shimura, T., Kaida, K., Ando, T., Kameyama, T., and Tsuji, T., J. Antibiot., 1997, vol. 50, p. 614. https://doi.org/10.7164/antibiotics.50.614

    Article  CAS  Google Scholar 

  6. Sato, S., Suga, Y., Yoshimura, T., Nakagawa, R., Tsuji, T., Umemura, K., and Andoh, T., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 2653. https://doi.org/10.1016/S0960-894X(99)00440-0

    Article  CAS  Google Scholar 

  7. Franck, B., Angew. Chem., 1969, vol. 81, p. 269. https://doi.org/10.1002/ange.19690810802

    Article  Google Scholar 

  8. Tatsuta, K., Yoshihara, S., Hattori, N., Yoshida, S., and Hosokawa, S., J. Antibiot., 2009, vol. 62, p. 469. https://doi.org/10.1038/ja.2009.52

    Article  CAS  Google Scholar 

  9. Sosnovskikh, V.Y., Korotaev, V.Y., Barbov, A.Y., Kutyashev, I.B., and Safrygin, A.V., Eur. J. Org. Chem., 2015, vol. 2015, p. 1932. https://doi.org/10.1002/ejoc.201403585

    Article  CAS  Google Scholar 

  10. Albrecht, A. and Bojanowski, J., Adv. Synth. Catal., 2017, vol. 359, p. 2907. https://doi.org/10.1002/adsc.201700400

    Article  CAS  Google Scholar 

  11. Chernov, N.M., Shutov, R.V., Sharoyko, V.V., Kuz’mich, N.N., Belyakov, A.V., and Yakovlev, I.P., Eur. J. Org. Chem., 2017, vol. 2017, p. 2836. https://doi.org/10.1002/ejoc.201700310

    Article  CAS  Google Scholar 

  12. Bodwell, G.J., Hawco, K.M., and da Silva, R.P., Synlett, 2003, p. 179 https://doi.org/10.1055/s-2003-36800

    Google Scholar 

  13. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lip-parini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., and Fox, D.J., Gaussian 16, Revision B.01, Wallingford CT: Gaussian, 2016.

    Google Scholar 

  14. Nohara, A., Kuriki, H., Saijo, T., Ukawa, K., Murata, T., Kanno, M., and Sanno, Y., J. Med. Chem., 1975, vol. 18, p. 34. https://doi.org/10.1021/jm00235a008

    Article  CAS  Google Scholar 

  15. Chernov, N.M., Shutov, R.V., Barygin, O.I., Dron, M.Y., Starova, G.L., Kuz’mich, N.N., and Yakovlev, I.P., Eur. J. Org. Chem., 2018, vol. 2018, p. 6304. https://doi.org/10.1002/ejoc.201801159

    Article  CAS  Google Scholar 

  16. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the scholarship from the Council for Grants at the President of the Russian Federation (competition SP-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chernov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, N.M., Moroz, T.V., Shutov, R.V. et al. Synthesis of New 4,4a-Dihydroxanthones via [4+2]-Cycloaddition Reaction. Russ J Gen Chem 89, 2463–2470 (2019). https://doi.org/10.1134/S1070363219120223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219120223

Keywords

Navigation