Skip to main content
Log in

Polymeric composite systems modified with allotropic forms of carbon (review)

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Most widely occurring classes of carbon nanoparticles used to create polymeric composite systems are considered. The possibility is demonstrated of using “polymer-carbon nanoparticles” composites for raising the level of mechanical properties of polymeric materials, creating friction units with improved tribological characteristics, developing new electrochemical, microelectronic, and optical devices, and modifying barrier properties of polymeric membranes. Methods for treatment of nanoparticles to provide their compatibility with polymeric matrices and preclude their aggregation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rit, M., Nanokonstruirovanie v nauke i tekhnike: Vvedenie v mir nanorascheta (Nanoengineering in Science and Technology: Introduction to the World of Nanocalculation), Moscow: NITs Regulyarn. Khaotich. Dinamika, 2006.

    Google Scholar 

  2. Generalov, M.B., Kriokhimicheskaya nanotekhnologiya: Uchebnoe posobie (Cryochemical Nanotechnology: Textbook), Moscow: Akademkniga, 2006.

    Google Scholar 

  3. Andrievskii, R.A., Ros. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    CAS  Google Scholar 

  4. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy: Uchebnoe posobie (Nanostructural Materials: Textbook), Moscow: Akademiya, 2005.

    Google Scholar 

  5. Nanotekhnologiya v blizhaishem desyatiletii: Prognoz napravleniya issledovaniya (Nanotechnology in the Nearest Decade: Prognosis of Research Areas), Roko, M.K., Williams, R.S., and Alivasotos, K., Eds., Moscow: Mir, 2002.

    Google Scholar 

  6. Sorokina, N.E., Nikol’skaya, I.V., Ionov, S.G., and Avdeev, V.V., Izv. Akad. Nauk, Ser. Khim., 2005, no. 8, pp. 1699–1716.

  7. Sladkov, A.M., Karbin — tret’ya allotropnaya forma ugleroda (Carbine as a Third Allotropic Form of Carbon), Moscow: Nauka, 2003.

    Google Scholar 

  8. Kroto, H.W., Heath, J.R., O’Brien, S.C., et al., Nature, 1985, vol. 318, no. 6042, pp. 162–163.

    Article  CAS  Google Scholar 

  9. Kratschmer, W., Lamb, L.D., Fostiroponlos, K., and Hoffman, D.R., Nature, 1990, vol. 347, no. 6291, pp. 354–358.

    Article  Google Scholar 

  10. Goodson, A.L., Gladys, C.L., and Worst, D.E., J. Chem. Inf. Comput. Sci., 1995, vol. 35, no. 6, pp. 969–978.

    CAS  Google Scholar 

  11. Rakov, E.G., Nanotrubki i fullereny (Nanotubes and Fullerenes), Moscow: Logos, 2006.

    Google Scholar 

  12. Rakov, E.G., Uspekhi Khim., 2000, vol. 69, no. 1, pp. 41–59.

    Google Scholar 

  13. Rakov, E.G., Khim. Tekhnol., 2003, no. 10, pp. 2–7.

  14. Rakov, E.G., Ros. Khim. Zh., 2004, vol. 48, no. 5, pp. 12–20.

    CAS  Google Scholar 

  15. Rakov, E.G., Blinov, S.N., Ivanov, I.G., et al., Zh. Prikl. Khim., 2004, vol. 77, no. 2, pp. 193–197.

    Google Scholar 

  16. Rakov, E.G., Uspekhi Khim., 2007, vol. 76, no. 1, pp. 3–26.

    Google Scholar 

  17. Rakov, E.G., Uspekhi Khim., 2001, vol. 70, no. 11, pp. 934–973.

    Google Scholar 

  18. Ivankovic, M., Polimeri, 2007, vol. 28, no. 3, pp. 156–167.

    CAS  Google Scholar 

  19. Stel’makh, V.F., Strigutskii, L.V., Shpilevskii, E.M., et al., Fullereny i fullerenopodobnye struktury (Fullerenes and Fullerene-like Structures), Minsk: Lykov Inst. Teplo-Massoobmena, Nats. Akad. Nauk Belarus., 2000.

    Google Scholar 

  20. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., et al., Nature, 1997, vol. 386, no. 6623, pp. 377–379.

    Article  CAS  Google Scholar 

  21. Benard, P., Chahine, R., Chandonia, P.A., et al., J. All. Comp., 2007, vol. 446–447, pp. 380–384.

    Article  CAS  Google Scholar 

  22. Kimizuka, O., Tanaikea, O., Yamashita, J., et al., Carbon, 2008, vol. 46, no. 14, pp. 1999–2001.

    Article  CAS  Google Scholar 

  23. Vivien, L., Anglaret, E., Riehl, D., et al., Chem. Phys. Lett., 1999, vol. 307, no. 5–6, pp. 317–319.

    Article  CAS  Google Scholar 

  24. Tada, T. and Kanayama, T., Jap. J. Appl. Phys., Pt 2, 1996, vol. 35, no. 1A, pp. L63–L65.

    Article  CAS  Google Scholar 

  25. Postma, H.W.Ch., Teepen, T., Yao, Z., et al., Science, 2001, vol. 293, no. 5527, pp. 76–79.

    Article  CAS  Google Scholar 

  26. Jarillo-Herrero, P., van Dam, J.A., and Kouwenhoven, L.P., Nature, 2006, vol. 439, no. 7079, pp. 953–956.

    Article  CAS  Google Scholar 

  27. Ebbesen, T.W. and Gibson, J.M., Nature, 1996, vol. 381, no. 6584, pp. 678–680.

    Article  Google Scholar 

  28. Wang, C., Guo, Z.-X., Fu, S., et al., Progr. Polym. Sci., 2004, vol. 29, no. 11, pp. 1079–1141.

    Article  CAS  Google Scholar 

  29. Badamshina, E.R. and Gafurova, M.P., Vysokomol. Soedin., 2008, vol. 50, no. 8, pp. 1572–1584.

    CAS  Google Scholar 

  30. Harris, P.J., Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge University Press, 2001.

  31. DiBenedetto, A.T., Comp. Sci. Technol., 1991, vol. 42, nos. 1–3, pp. 103–123.

    Article  CAS  Google Scholar 

  32. Nardin, M. and Schultz, J., J. Mater. Sci. Lett., 1993, vol. 12, no. 16, pp. 1245–1247.

    Article  CAS  Google Scholar 

  33. Wagner, H.D., Lourie, O., Feldman, Y., and Tenne, R., Appl. Phys. Lett., 1998, vol. 72, no. 2, pp. 188–190.

    Article  CAS  Google Scholar 

  34. Garboczi, E.J., Snyder, K.A., Douglas, J.F., and Thorpe, M.F., Phys. Rev. E, 1995, vol. 52, no. 1, pp. 819–828.

    Article  CAS  Google Scholar 

  35. Burya, A.I., Tkachev, A.G., Nakonechnaya, N.I., et al., Mater., Tekhnol., Instrum., 2007, vol. 12, no. 4, pp. 72–75.

    CAS  Google Scholar 

  36. Liu, X., Long, S., and Luo, D., Mater. Lett., 2008, vol. 62, no. 1, pp. 19–22.

    Article  CAS  Google Scholar 

  37. Qian, D., Dickey, E.C., Andrews, R., and Rantell, T., Appl. Phys. Lett., 2000, vol. 76, no. 20, pp. 2868–2871.

    Article  CAS  Google Scholar 

  38. Biercuk, M.J., Llagu, M.C., Radosavljevic, N.M., et al., Appl. Phys. Lett., 2002, vol. 80, no. 3, pp. 2767–2770.

    Article  CAS  Google Scholar 

  39. Meincke, O., Kaempfer, D., Weickmann, H., et al., Polymer, 2004, vol. 45, no. 3, pp. 739–748.

    Article  CAS  Google Scholar 

  40. Miyagawa, H. and Drzal, L.T., Polymer, 2004, vol. 45, no. 15, pp. 5163–5170.

    Article  CAS  Google Scholar 

  41. Gorga, R.E. and Cohen, R.E., J. Polym. Sci., Polym. Phys., 2004, vol. 42, no. 14, pp. 2690–2702.

    Article  CAS  Google Scholar 

  42. Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., Mater. Sci. Eng., 2005, vol. 49, no. 14, pp. 89–112.

    Google Scholar 

  43. Yudin, V.E., Otaigbe, J.U., Drzal, L.T., and Svetlichnyi, V.M., Adv. Composites Lett., 2006, vol. 15, no. 4, pp. 137.

    Google Scholar 

  44. Yudin, V.E., Feldman, A.Y., Svetlichnyi, V.M., et al., Comp. Sci. Techn., 2007, vol. 67, no. 5, pp. 789–794.

    Article  CAS  Google Scholar 

  45. Avila-Orta, C.A. and Medellin-Rodriquez, F.J., J. Appl. Polym. Sci., 2007, vol. 106, no. 4, pp. 2640–2647.

    Article  CAS  Google Scholar 

  46. Potalitsyn, M.G., Babenko, A.A., Alekhin, O.S., et al., Zh. Prikl. Khim., 2006, vol. 79, no. 2, pp. 308–311.

    Google Scholar 

  47. Okatova, G.P. and Svidunovich, N.A., Ros. Khim. Zh., 2006, vol. 50, no. 1, pp. 68–70.

    CAS  Google Scholar 

  48. Gofman, I.V., Svetlichnyi, V.M., Yudin, V.E., et al., Zh. Obshch. Khim., 2007, vol. 77, no. 7, pp. 1075–1080.

    Google Scholar 

  49. Delozier, D.M., Orwoll, R.A., Cahoon, J.F., et al., Polymer, 2002, vol. 43, no. 3, pp. 813–822.

    Article  CAS  Google Scholar 

  50. Zhu, B.-K., Xie, S.-H., Xu, Z.-K., and Xu, Y.-Y., Comp. Sci. Techn., 2006, vol. 66, nos. 3–4, pp. 548–554.

    Article  CAS  Google Scholar 

  51. Kozlov, G.V., Burya, A.I., and Lipatov, Yu.S., Dop. Nats. Akad. Nauk Ukr., 2008, no. 1, pp. 132–136.

  52. Yudin, V.E., Svetlichnyi, V.M., Gubanova, G.N., et al., Polyimides and Other High Temperature Polymers, Mittal, K.L., Ed., vol. 3. 2005.

  53. Chentsov, A.V., Development of Discrete-Continual Models of Deformation and Disintegration of Nanomaterials, Cand. Sci. Dissertation, Moscow, 2008.

  54. Ginzburg, B.M., Tochil’nikov, D.G., Tuichiev, Sh., and Shepelevskii, A.A., Pis’ma Zh. Tekhn. Fiz., 2007, vol. 33, no. 20, pp. 88–94.

    Google Scholar 

  55. Ginzburg, B.M., Pozdnyakov, A.O., Tochil’nikov, D.G., et al., Vysokomol. Soedin., 2008, vol. 50, no. 8, pp. 1483–1492.

    CAS  Google Scholar 

  56. Shpilevskii, E.M., Shilagardi, G., and Akhremkova, G.S., Fullereny i fullerenopodobnye struktury (Fullerenes and Fullerene-like Structures), Minsk: Lykov Inst. Teplo-Massoobmena, Nats. Akad. Nauk Belarus., 2005.

    Google Scholar 

  57. Aderikha, V.N., Shapovalov, V.A., and Pleskachevskii, Yu.M., Trenie Iznos, 2008, vol. 29, no. 2, pp. 160–168.

    CAS  Google Scholar 

  58. Shumakov, A.N., Yudin, V.E., Svetlichnyi, V.M., et al., Vopr. Mater., 2006, no. 2 (46), pp. 158–165.

  59. Gofman, I.V., Abalov, I.V., Yudin, V.E., and Tiranov, V.G., Materialy Pyatoi Vserossiiskoi Karginskoi konferentsii “Polimery — 2010” (Proc. Fifth All-Russia Kargin Conf. “Polymers 2010”), Moscow, 2010, pp. 3–35.

  60. Cai, H., Yan, F., and Xue, Q., Mater. Sci. Eng. A, 2004, vol. 364, nos. 1–2, pp. 94–100.

    Google Scholar 

  61. Tumanskii, B.L., Izv. Ross. Akad. Nauk, Ser. Khim., 1996, no. 10, pp. 2396–2401.

  62. Kropka, J.M., Putz, K.W., Pryamitsyn, V., et al., Macromolecules, 2007, vol. 40, no. 15, pp. 5424–5432.

    Article  CAS  Google Scholar 

  63. Gong, X.Y., Liu, J., Baskaran, S., et al., Chem. Mater., 2000, vol. 12, no. 4, pp. 1049–1052.

    Article  CAS  Google Scholar 

  64. Velasco-Santos, C., Martınez-Hernandez, A.L., Fisher, F.T., et al., Chem. Mater., 2003, vol. 15, no. 23, pp. 4470–4475.

    Article  CAS  Google Scholar 

  65. Kashiwagi, T., Grulke, E., Hilding, J., et al., Macromol. Rapid Commun., 2002, vol. 23, no. 13, pp. 761–762.

    Article  CAS  Google Scholar 

  66. Chernov, A.J., Obraztsova, E.D., and Lobach, A.S., Phys. Stat. Solidi B, 2007, vol. 244, no. 11, pp. 4231–4235.

    Article  CAS  Google Scholar 

  67. Kovalevskaya, T.I., Ignatovskii, M.I., Sviridenok, A.I., et al., Mater., Tekhnol., Instrum., 2007, vol. 12, no. 4, pp. 39–45.

    CAS  Google Scholar 

  68. Kovalevskaya, T.I., Ignatovskii, M.I., Sviridenok, A.I., and Shkuta, P.E., Mater., Tekhnol., Instrum., 2006, vol. 11, no. 2, pp. 44–48.

    CAS  Google Scholar 

  69. Jiang, X., Bin, Y., and Matsuo, M., Polymer, 2005, vol. 46, no. 18, pp. 7418–7424.

    Article  CAS  Google Scholar 

  70. Lin, J.-S. and Chiu, H.-T., J. Polym. Res., 2002, vol. 9, no. 3, pp. 189–194.

    Article  CAS  Google Scholar 

  71. Hsu, W.-K. and Chu, H.-Y., Nanotechnology, 2008, vol. 19, no. 13, pp. 1353041–1353044.

    Article  CAS  Google Scholar 

  72. Grekhov, A.M., Tarasenko, A.B., Nikitin, A.A., et al., Vserossiiskaya nauchnaya konferentsiya “Membrany-2007”: Sbornik materialov (Proc. All-Russia Sci. Conf. “Membranes-2007”), Moscow, 2007, p. 154.

  73. Anan’eva, T.A. and Kuznetsov, A.Yu., Khim. Volokna, 2007, no. 2, pp. 33–37.

  74. Tang, C., Chen, N., Zhang, Q., et al., Polym. Degrad. Stab., 2009, vol. 94, no. 1, pp. 124–131.

    Article  CAS  Google Scholar 

  75. Struk, V.A., Rogachev, A.V., Skaskevich, A.A., et al., Mater. Tekhnol., Instrum., 2002, vol. 7, no. 3, pp. 53–65.

    CAS  Google Scholar 

  76. Shames, A.I., Katz, E.A., Panich, A.M., et al., Diam. Rel. Mat., 2009, vol. 18, nos. 2–3, pp. 505–510.

    Article  CAS  Google Scholar 

  77. Yudin, V.E., Svetlichnyi, V.M., Shumakov, A.N., et al., Macromol. Rapid Commun., 2005, vol. 26, no. 11, pp. 885.

    Article  CAS  Google Scholar 

  78. Yudovich, V.M., Yudovich, M.E., Toikka, A.M., and Ponomarev, A.N., Vestn. SPb Gos. Univ., 2009, Ser. 4, no. 3, pp. 59–65.

  79. Epifanovskii, I.S., Ponomarev, A.N., Donskoi, A.A., and Kashirin, S.V., Perspektivn. Mater., 2006, no. 2, pp. 15–18.

  80. Balaban, A.T., Klein, D.J., and Liu, X., Carbon, 1994, vol. 32, no. 2, pp. 357–359.

    Article  CAS  Google Scholar 

  81. Jordan, S.P. and Crespi, V.H., Phys. Rev. Lett., 2004, vol. 93, no. 25, pp. 2555041–2555044.

    Article  CAS  Google Scholar 

  82. Gofman, I.V., Abalov, I.V., Yudin, V.E., and Tiranov, V.G., Fiz. Tverd. Tela, 2011, vol. 53, no. 7, pp. 1433–1439.

    Google Scholar 

  83. Novoselov, K.S., Jiang, D., Schedin, F., et al., Proc. Nat. Acad. Sci. USA, 2005, vol. 102, no. 30, pp. 10451–10453.

    Article  CAS  Google Scholar 

  84. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Nature, 2005, vol. 438, no. 7065, pp. 197–200.

    Article  CAS  Google Scholar 

  85. Shioyama, H., J. Mat. Sci. Lett., 2001, vol. 20, no. 6, pp. 499–500.

    Article  CAS  Google Scholar 

  86. Rollings, E., Gweon, G.-H., Zhou, S.Y., et al., J. Phys. Chem. Sol., 2006, vol. 67, no. 9–10, pp. 2172–2177.

    Article  CAS  Google Scholar 

  87. Parvizi, F., Teweldebrhan, D., Ghosh, S., et al., Micro and Nano Lett., 2008, vol. 3, no. 1, pp. 29–34.

    Article  CAS  Google Scholar 

  88. Niyogi, S., Bekyarova, E., Itkis, M.E., et al., J. Am. Chem. Soc., 2006, vol. 128, no. 24, pp. 7720–7721.

    Article  CAS  Google Scholar 

  89. Bunch, J.S., Yaish, Y., Brink, M., et al., Nano Lett., 2005, vol. 5, no. 2, pp. 287–290.

    Article  CAS  Google Scholar 

  90. Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., et al., J. Chem. Sci., Indian Acad. Sci., 2008, vol. 120, no. 1, pp. 9–13.

    Article  CAS  Google Scholar 

  91. Stankovich, S., Piner, R.D., Chen, X., et al., J. Mater. Chem., 2006, vol. 16, no. 2, pp. 155–158.

    Article  CAS  Google Scholar 

  92. Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al., Nature, 2006, vol. 442, no. 7100, pp. 282–286.

    Article  CAS  Google Scholar 

  93. Bunch, J.S., van der Zande, A.M., Verbridge, S.S., et al., Science, 2007, vol. 315, no. 5811, pp. 490–493.

    Article  CAS  Google Scholar 

  94. Kim, H., Abdala, A.A., and Macosko, C.W., Macromolecules, 2010, vol. 43, no. 16, pp. 6515–6530.

    Article  CAS  Google Scholar 

  95. Belenkov, E.A., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanoalmazy i rodstvennye uglerodnye nanomaterialy: Komp’yuternoe materialovedenie (Nanodiamonds and Related Carbon Nanomaterials: Computerized Materials Science), Yekaterinburg: Ur. Otd. Ross. Akad. Nauk, 2008.

    Google Scholar 

  96. Dolmatov, V.Yu., Veretennikova, M.V., Marchukov, V.A., and Sushchev, V.G., Fiz. Tverd. Tela, 2004, vol. 46, no. 4, pp. 596–600.

    Google Scholar 

  97. Dolmatov, V.Yu., Uspekhi Khim., 2007, vol. 76, no. 4, pp. 375–397.

    Google Scholar 

  98. Puzyr’, A.P., Selyutin, G.E., Vorob’ev, V.B., et al., Nanotekhnika, 2006, no. 4(8), pp. 96–105.

  99. Fedorova, E.N., Okab, D., Markin, V.B., et al., Ul’tradispersnye poroshki, nanostruktury, materialy: Poluchenie, svoistva, primenenie: IV Staverovskie chteniya (Ultradispersed Powders, Nanostructures<Materials: Synthesis, Properties, Use: IV Staverov Readings), Krasnoyarsk: IPTs KGTU, 2006, pp. 331–335.

    Google Scholar 

  100. Voznyakovskii, A.P., Fiz. Tverd. Tela, 2004, vol. 46, no. 4, pp. 629–632.

    Google Scholar 

  101. Kurkin, T.S., Ozerin, A.N., Kechek’yan, A.S., et al., Vysokomol. Soedin., 2008, vol. 50, no. 1, pp. 54–62.

    CAS  Google Scholar 

  102. Maitra, U., Prasad, K.E., Ramamurty, U., and Rao, C.N.R., Sol. State Commun., 2009, vol. 149, nos. 39–40, pp. 1693–1697.

    Article  CAS  Google Scholar 

  103. Behler, K.D., Stravato, A., Mochalinet, V., et al., ACS Nano, 2009, vol. 3, no. 2, pp. 363–369.

    Article  CAS  Google Scholar 

  104. Cochet, M., Maser, W.K., Benito, A.M., et al., Chem. Commun., 2001, no. 16, pp. 1450–1451.

  105. Bekyarova, E., Thostenson, E.T., and Yu, A., Phys. Chem., 2007, vol. 3, no. 48, pp. 17865–17871.

    Google Scholar 

  106. Nicholas, A., Parra-Vasquez, G., and Behabtu, N., et al., ACS Nano, 2010, vol. 4, no. 7, pp. 3969–3978.

    Article  CAS  Google Scholar 

  107. Chen, J., Hamon, M.A., Hu, H., et al., Science, 1998, vol. 282, no. 5386, pp. 95–98.

    Article  CAS  Google Scholar 

  108. Qin, Y., Liu, L., Shi, J., et al., Chem. Mater., 2003, vol. 15, no. 17, pp. 3256–3260.

    Article  CAS  Google Scholar 

  109. Qin, S., Fang, N., Ye, W., and Wen, J., J. Mater. Sci., 2008, vol. 43, no. 8, pp. 2653–2658.

    Article  CAS  Google Scholar 

  110. Kirikova, M.N., Physicochemical Properties of Functionalized Multi-Walled Carbon Nanotubes, Cand. Sci. Dissertation, Moscow, 2009.

  111. Zhou, Z., Wang, S., Lu, L., et al., Comp. Sci. Tech., 2008, vol. 68, nos. 7–8, pp. 1727–1733.

    Article  CAS  Google Scholar 

  112. Assali, M., Leal, M.P., Fernandez, I., et al., Nano Res., 2010, vol. 3, no. 11, pp. 764–778.

    Article  CAS  Google Scholar 

  113. Liu, C.-H. and Zhang, H.-L., Nanoscale, 2010, vol. 2, no. 10, pp. 1901–1918.

    Article  CAS  Google Scholar 

  114. Mu, S.-S., Tang, H.-L., Qian, S.-H., et al., Carbon, 2006, vol. 44, no. 4, pp. 762–767.

    Article  CAS  Google Scholar 

  115. Lin, C.-C. and Huang, H.-C., J. Power Sources, 2009, vol. 188, no. 1, pp. 332–337.

    Article  CAS  Google Scholar 

  116. RF Patent (11) 2282919 (13).

  117. Qian, D., Dickey, E.C., Andrews, R., and Rantell, T., Appl. Phys. Lett., 2000, vol. 76, no. 20, pp. 2868–2870.

    Article  CAS  Google Scholar 

  118. Sandler, J., Shaffer, M.S.P., Prasse, T., et al., Polymer, 1999, vol. 40, no. 21, pp. 5967–5971.

    Article  CAS  Google Scholar 

  119. Song, R., Yang, D., and He, L., J. Mater. Sci., 2008, vol. 43, no. 4, pp. 1205–1213.

    Article  CAS  Google Scholar 

  120. Krakovyak, M.G., Nekrasova, T.N., Anan’eva, T.D., and Anufrieva, E.V., Vysokomol. Soedin., Ser. B, 2002, vol. 44, no. 10, pp. 1853–1859.

    CAS  Google Scholar 

  121. Marumoto, K., Takeuchi, N., Ozaki, T., and Kuroda, S., Synth. Met., 2002, vol. 129, no. 3, pp. 239–247.

    Article  CAS  Google Scholar 

  122. Melenevskaya, E.Yu., Ratnikova, O.V., Evlampieva, N.P., et al., Vysokomol. Soedin., 2003, vol. 45, no. 7, pp. 1090–1098.

    CAS  Google Scholar 

  123. Gofman, I.V., Abalov, I.V., Gladchenko, S.V., and Afanas’eva, N.V., Polym. Adv. Technol., 2011, vol. 22, no. 5, pp. 714–719.

    Google Scholar 

  124. Ozerin, A.N., Materialy Pyatoi Vserossiiskoi Karginskoi konferentsii “Polimery — 2010” (Proc. Fifth All-Russia Kargin Conf. “Polymers — 2010”), Moscow, 2010, p. 88.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Valenkov, I.V. Gofman, K.S. Nosov, V.M. Shapovalov, V.E. Yudin, 2011, published in Zhurnal Prikladnoi Khimii, 2011, Vol. 84, No. 5, pp. 705–720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenkov, A.M., Gofman, I.V., Nosov, K.S. et al. Polymeric composite systems modified with allotropic forms of carbon (review). Russ J Appl Chem 84, 735–750 (2011). https://doi.org/10.1134/S1070427211050016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427211050016

Keywords

Navigation