Skip to main content
Log in

Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Two improved methods for the synthesis of 5-hydroxymethylfurfural by acid-catalyzed dehydration of fructose have been developed. The first one is the synthesis in ionic liquids with continuous removal of water under reduced pressure, and the second is the synthesis in the two-phase system consisting of aqueous NaHSO4 and methyl isobutyl ketone under atmospheric pressure. Both methods ensure isolation of crystalline 5-hydroxymethylfurfural with high purity and multiple recycling of the catalytic system. The synthesis in ionic liquid is convenient on a laboratory scale. Despite relatively low yield, the two-phase synthesis is preferred for industrial scale-up due to simple isolation and purification procedures combined with efficient regeneration of extractant and the catalytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maity, S.K., Renewable Sustainable Energy Rev., 2015, vol. 43, p. 1427.

    Article  CAS  Google Scholar 

  2. Caes, B.R., Teixeira, R.E., Knapp, K.G., and Raines, R.T., ACS Sustainable Chem. Eng., 2015, vol. 3, p. 2591.

    Article  CAS  Google Scholar 

  3. Sheldon, R.A., J. Mol. Catal. A: Chem., 2016, in press. http://dx.doi.org/10.1016/j.molcata.2016.01.013

    Google Scholar 

  4. Van Putten, R.-J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., and de Vries, J.G., Chem. Rev., 2013, vol. 113, p. 1499.

    Article  Google Scholar 

  5. Mukherjee, A., Dumont, M.-J., and Raghavan, V., Biomass Bioenergy, 2015, vol. 72, p. 143.

    Article  CAS  Google Scholar 

  6. Rout, P.K., Nannaware, A.D., Prakash, O., Kalra, A., and Rajasekharan, R., Chem. Eng. Sci., 2016, vol. 142, p. 318.

    Article  CAS  Google Scholar 

  7. Gandini, A., Lacerda, T.M., Carvalho, A.J.F., and Trovatti, E., Chem. Rev., 2016, vol. 116, p. 1637.

    Article  CAS  Google Scholar 

  8. Esposito, D. and Antonietti, M., Chem. Soc. Rev., 2015, vol. 44, p. 5821.

    Article  CAS  Google Scholar 

  9. Kashparova, V.P., Khokhlova, E.A., Galkin, K.I., Chernyshev, V.M., and Ananikov, V.P., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 1069.

    Article  CAS  Google Scholar 

  10. Krawielitzki, S. and Kläusli, T.M., Ind. Biotechnol., 2015, vol. 11, p. 6.

    Article  Google Scholar 

  11. Khokhlova, E.A., Kachala, V.V., and Ananikov, V.P., ChemSusChem., 2012, vol. 5, p. 783.

    Article  CAS  Google Scholar 

  12. Khokhlova, E.A., Kachala, V.V., and Ananikov, V.P., Russ. Chem. Bull., Int. Ed., 2013, vol. 62, p. 830.

    Article  CAS  Google Scholar 

  13. Kashin, A.S., Galkin, K.I., Khokhlova, E.A., and Ananikov, V.P., Angew. Chem., Int. Ed., 2016, vol. 55, p. 2161.

    Article  CAS  Google Scholar 

  14. Jang, G.-W., Wong, J.-J., Huang, Y.-T., and Li, C.-L., Ionic Liquids in the Biorefinery Concept: Challenges and Perspectives, Bogel-Lukasik, R., Ed., Roy. Soc. Chem., 2016, p. 202.

  15. Yi, Y.-B., Lee, J.-W., and Chung, C.-H., Environ. Chem. Lett., 2015, vol. 13, p. 173.

    Article  CAS  Google Scholar 

  16. Zhang, J., Yu, X., Zou, F., Zhong, Y., Du, N., and Huang, X., ACS Sustainable Chem. Eng., 2015, vol. 3, p. 3338.

    Article  CAS  Google Scholar 

  17. Zhou, J., Huang, T., Zhao, Y., Xia, Z., Xu, Z., Jia, S., Wang, J., and Zhang, Z.C., Ind. Eng. Chem. Res., 2015, vol. 54, p. 7977.

    Article  CAS  Google Scholar 

  18. Saha, B. and Abu-Omar, M.M., Green Chem., 2014, vol. 16, p. 24.

    Article  CAS  Google Scholar 

  19. Blumenthal, L.C., Jens, C.M., Ulbrich, J., Schwering, F., Langrehr, V., Turek, T., Kunz, U., Leonhard, K., and Palkovits, R., ACS Sustainable Chem. Eng., 2016, vol. 4, p. 228.

    Article  CAS  Google Scholar 

  20. Sindermann, E.C., Holbach, A., de Haan, A., and Kockmann, N., Chem. Eng. J., 2016, vol. 283, p. 251.

    Article  CAS  Google Scholar 

  21. Ma, H., Wang, F., Yu, Y., Wang, L., and Li, X., Ind. Eng. Chem. Res., 2015, vol. 54, p. 2657.

    Article  CAS  Google Scholar 

  22. Sievers, C., Musin, I., Marzialetti, T., Valenzuela Olarte, M.B., Agrawal, P.K., and Jones, C.W., ChemSusChem., 2009, vol. 2, p. 665.

    Article  CAS  Google Scholar 

  23. Egorova, K.S. and Ananikov, V.P., ChemSusChem, 2014, vol. 7, p. 336.

    Article  CAS  Google Scholar 

  24. Galkin, K.I., Khokhlova, E.A., Romashov, L.V., Zalesskiy, S.S., Kachala, V.V., Burykina, J.V., and Ananikov, V.P., Angew. Chem., Int. Ed., 2016, in press. http://dx.doi.org/10.1002/anie.201602883

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ananikov.

Additional information

Original Russian Text © V.A. Klushin, K.I. Galkin, V.P. Kashparova, E.A. Krivodaeva, O.A. Kravchenko, N.V. Smirnova, V.M. Chernyshev, V.P. Ananikov, 2016, published in Zhurnal Organicheskoi Khimii, 2016, Vol. 52, No. 6, pp. 783–787.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klushin, V.A., Galkin, K.I., Kashparova, V.P. et al. Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical. Russ J Org Chem 52, 767–771 (2016). https://doi.org/10.1134/S1070428016060014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428016060014

Navigation